Inteqgration

References: (1) Business Mathematics by Qazi Zameeruddin, V. K. Khanna and S.K. Bhambri
(2) Schaum’s Outlines, Calculus by Frank Ayres, Jr. and Elliot Mendelson (4™
Edition)

Integration or antidifferentiation is the reverse process of differentiation. It is the process
of finding an original function when the derivative of the function is given.

1. Antiderivative and the Indefinite Integral (Ref 1: pg. 630-632, Ref 2: pg.
196-198)

Definition:
A function F(x) is called an antiderivative of the function f(x) if F'(x)= f(x) for all x in
the domain of f(x).

Example:

(1) If f(x) = 3x* then F(x) = x* is an antiderivative of f(x) since F'(x)= 3x* = f(x).

(2) Iff(x) = cos x then F(x) = sin x is an antiderivative of f(x) since F'(x)= cos x = f(x).
5

(3) Iff(x) =x* then F(x) = X? is an antiderivative of f(x) since F'(x)=x* = f(x).

Example:
Consider the following functions and their derivatives.

(i) IfFi(x) =x° then F/(x)=3x

(ii) 1f Fa(x) =x% +5, then F}(x)=3x’
(iii) If F3(x) = x% - 10, then F,(x)= 3%
(iv) 1f F4(x) =x° + /2, then F/(x)=3x?

Therefore, if f(x) = 3x%, then F1(x) = X°, Fa(x) = X° + 5, F3(X) = X° — 10 and F4(x) = X+ /2
are all antiderivatives of f(x) = 3x°.

We see from the above example, that the antiderivative of a function is not unique. If F(x)
is an antiderivative of f(x), then F(x) + ¢ (where c is a constant) is also an antiderivative
of f(x), since di[F(x) +c]=F'(x).

X

Theorem:
If F1(x) and F»(x) are antiderivatives of a function f, then Fi(x) - F2(x) = C, where C is a
constant.



It follows from the above theorem that if F1(x) is an antiderivative of a function f(x), then
every other antiderivative of f(x) is given by F(x) = Fi(x) + C, where C is an arbitrary
constant. C is called the constant of integration.

We denote the process of integration by the symbol | which is called an integral sign.
The expression jf(x)dx denotes any antiderivative of f(x); i.e., if F'(x)= f(x) then

_[f(x)dx = F(x) + C. jf(x)dx is also called the indefinite integral of f(x). In this

notation, f(x) is called the integrand of the indefinite integral and the x in dx is the
variable of integration. j f (x)dx isread as ‘the integral of f(x) with respect to x’.

Since differentiation is the inverse operation of integration,
d

—[| f(x)dx] = f(x

S 00 =1(0

And since integration is the inverse operation of differentiation,
j f'(x)dx = f(x)+C.

Rules of Integration

1) Ikdx =kx+C (k a constant) [since %(kx +C)=k]
() [KF()dx=k[ f(x)dx  (kaconstant)
) [If0)+g0)ldx= [ f(x)dx+ [ g(x)dx

r+l r+1

X
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4) jx dx_r+1+C, (r=-1) [smce—dx(r +C)=x"]
® [0 g =" ¢ (reo)
r+1
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Example:

(1) [v3dx=+/3x+C by applying (1) above

6
2;( +C by applying (2) and (4) above

6
2) [axsdx=4X+cC=
@ | -

3

1 2
3) j[2x2 +10]dx = 2%+1OX+C =

2

3
2
4; +10x+ C by applying (1), (2), (3) and




(4) above

(4x +1)°

(4) J'4(4x +1)%dx = +C by applying (5) above

2. Table of Indefinite Integrals (Ref 1: pg. 630-631, Ref 2: pg. 198, 225-228,

234 - 237)
Xr+l +1
1. | x'dx = +C r--1 since +C)=x"
-[ r+l ( ) x(r+1 )
. 1
2. |=dx=Inx+C (x#0 since —(njx|+C)==
Jroc=tnc (x=0) - (n+0) =~
J.de =Injg(x)[+C
9(x)
3. J'axdx= a since
Ina dx Ina
4. [erdx=e"+C since —(eX+C)=eX
dx
5. _[sin Xdx = —cosx+C since di(—cosx+C)=sinx
X
6. Jcosxdx:sinx+C since di(sinx+C):cosx
X
7. _[secz xdx = tanx +C since di(tanx+C):seczx
X
(x # %+ kr, k =0+1+2,..)
8. Jcoseczxdx:—cotx+C since di(—cotx+C):coseczx
X

(x £k, k =0,+1,42,..)

9. _[tan xdx = —Incos x|+ C  (x %+ kz, k =0,£1,+2,...)

10. [cotxdx =Injsinx|+C  (x=kr, k=01+2,..)

11. J'cos ecxdx = In|cos ecx —cot x| +C

12. _[sec xdx = In|secx +tan x| +C

13. j\/i—sm X iC=—cos? 5+C (x| <a)
dx 1. X 1
14.J' ,—— =—tan +c=—=cot?XscC (a>0)
a’+x* a a a a
dx 1 X
15 | ——==—sec —+C (x>a>0




3. The Substitution Method (Ref 1: pg. 637-638, 640, Ref 2: pg. 198, 289-294)

[ F(900)g'()dx = [ f(u)du

where u is replaced by g(x) after the right-hand side is evaluated.

Justification:

Let u = g(x). Then (;_u =g'(x) .
X

d _d du . .
&(j f(u)du) = E(J f (u)du)& by applying the chain rule

f (u).(;—u since differentiation is the reverse of integration
X

fF(a(x)g'(x)

Therefore, _[ f(u)du = j f(9(x))g’'(x)dx by the definition of the antiderivative.

Example:

Sln X
COS X

1) I tan xdx = f

Let u = cos x. Then (;_u =-sinx
X

Therefore, SINX gy — _[_—1du by substitution
COS X u

I—ldu =—Inu/+C

u
Therefore, Itan xdx = —Injcos x|+ C by substituting back u = cos x.
@) J‘ 2x% + 5
Letu=2x>+5. Then du _ 6x>. Therefore, ldu_ x?
dx 6 dx

Thus —d —ljldu:iln|u|+c:lln‘2x3+5‘+c
2x% +5 67U 6 6

(3) J(cos X + 4)° sin xdx



Let u=cosx+4. Then 3% — sinx.
dx
4

4
Therefore, [ (cosx-+4)°sinxdx = [-udu = 4 +.c = (XA

4

+C

4) J'idx where a is a constant.
X—a

Letu=x-a. Then d—uzl.
dx
j—dx du_ln|u|+C Injx—a|+C.

4. Integration by Parts (Ref 1: pg. 649-651, Ref 2: pg. 281-283)

j(uv’)dx =uv —j(vu "dx

Justification:

UV(X))" = u'(X)v(X) + u(x)v'(x)

Therefore, [ (u(x)v(x))'dx = [[u’(x)v(x) +u(x)v'(x)]dx
:Iu’(x)v(x)dx +J.u(x)v’(x) dx

i.e., u(x)v(x) = jv(x)u’(x)dx + Iu(x)v'(x)dx

Therefore, _[u(x)v'(x)dx = u(x)v(x) - jv(x)u'(x)dx

Another way of writing this is:

Iudv = uv—jvdu

Justification:

d d dv )
—/[|udv]=—[|udv].— by the chain rule.
dx [J. ] dv [j ] dx y

Also, iIudv =u and hence i[I udv]ﬁ =uv'.
dv dv dx
d d dv ,

ThUS &[J‘ UdV] == E[J‘ UdV]& =uv .

Hence judv = juv'dx .



Similarly jvdu = Jvu'dx

Therefore, Juv'dx =uv-— jvu ‘dx may also be written as Iudv =uv-— jvdu

This technique enables us to replace the *harder’ integrationj'udv by an ‘easier’

integration Jvdu :

Example:

(1) j xe**dx

Let u =x and dv = eZdx.

e2x

Then du = dx andv:Idv:jezxdx= ;

Therefore, by applying Iudv =uv-— Ivdu we obtain

2X

2X 2X 2X
J‘xezxdx:xe —je x="2__% ,¢c
2 2 2 4
(2) [Inxdx
Let u =In x and let dv = dx.
Then d—u=1 and v =x
dx X

Therefore, jln xdx =xInx - Ix.ldx=xlnx—jdx:xlnx—x+c
X

(3) j cos® xdx = J‘cos2 X COS Xdx
Let u = cos’x and dv = cos xdx

Then d—u:—Zcosxsinx and v:jdv :jcosxdx =sin X
dx

Therefore, J'cos,3 Xdx = _[cosz X c0S Xdx

cos® xsin x—jsin X(—2 cos xsin x)dx

CoS® Xsin X + ZIcos x(1—cos’ x)dx

cos? xsin X + chos xdx — chos3 xdx

Therefore, SJ' cos® xdx = cos2 xsin X + Zj cos xdx

Thus J‘cos3 xdx = %cos2 XSin X +§sin Xx+C.

Note: The integral _[cos3 Xdx = jcosz X COS XdXx = I(l—sin 2 x) cos xdx may also be
found by making the substitution u =sinx



5. Partial Fractions (Ref 2: pg. 304-309)

N (x)

A function of the form D—) where N(x) and D(x) are polynomials is called a rational
X

function. N(x) is the numerator and D(X) is the denominator. Suppose the degree of

N(x) is n and the degree of D(x) is m. If n <m, then % is said to be a proper fraction.
X
If n>m, N(x) is called an improper fraction.
D(x)

An improper fraction can be expressed as the sum of a polynomial and a proper fraction;
for, if n>m, we can divide the numerator by the denominator, obtaining as quotient a
polynomial Q(x) of degree n — m, and as remainder a polynomial R(x) of degree not
greater than m — 1.

N(x) _ R(x)

ORI

A polynomial is said to be irreducible, if it cannot be written as a product of two
polynomials of lower degree. Any linear polynomial f(x)=ax+b is automatically

irreducible.

If we consider a quadratic g(x)=ax”+bx+c, this is irreducible if and only if
b® —4ac<0.

Theorem:

Any polynomial D(x) can be written as a product of linear factors and irreducible
quadratic factors.

Partial Fractions

A rational function of the form _o+d where a #b may be expressed as the sum

(x—a)(x-b)

and B . These two fractions are called the
(x—a) (x=b)

partial fractions corresponding to the given rational function.

of two fractions of the form

We determine the constants A and B as follows:

cx+d _ A N
(x=a)(x=b) (x—a) (x=Db)
cx+d  _ A(x—=b)+B(x-a)
(x-a)(x-b)  (x-a)(x-b)

where a#b.

Suppose

Then



Therefore, cx+d = A(x—b) + B(x—a)

ca+d

a-b

cb+d

b-a

cX+d _ ca+d N cb+d
(x—a)(x-b) (a-b)(x—a) (b—a)(x—h)

Substituting x = a we obtain A =

Substituting x = b we obtain B =

Therefore,

We may also obtain the constants by equating the coefficients on the left and right sides
of cx+d =A(x-b)+B(x—a).

X: c=A+B

constant d=-bA-aB

and solving these simultaneous equations for A and B

We give below by examples, the method of finding the partial fractions of rational
functions that are proper fractions.

Case I: The denominator D(x) is a product of distinct linear factors
(x=a,),(X=2,)....(x~a,).

Then NGO _ N () __ A + A Fot A
D(x) (x—-a)(x-a,)..(x-a,) (x-a) (x-a,) (x-2a,)
Example: 2x+1
S (x=-D(x-2)(x-3)
2X+1 A B C

et = + + .
xX=-D(x-2)(x-3) (x-1) (x-2) (x=3

0 2X+1 :A(x—2)(x—3)+B(x—l)(x—3)+C(x—1)(x—2)
(x=D(x-2)(x-3) (x=D(x-2)(x-23) '

Therefore, 2x+1=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x - 2).
Substituting x = 1 we obtain 3 = A(-1)(-2). Therefore, A= g .
Substituting x = 2 we obtain 5 = B(1)(-1). Therefore, B =-5.
Substituting x = 3 we obtain 7 = C(2)(1). Therefore, C =g :

2x+1 3 5 7
hus = - +
(xX=-D(x-2)(x-3) 2(x-1) (x-2) 2(x-3




Case 11: The denominator D(x) = (x — a)*

Then NGO __ A - A - +—Ak
D(x) (x-a) (x—-a)> ~ (x-a)*
Example: X;ls
(x+3)
Lot XL A B C

t T = + >+ 3
(x+3) (x+3) (x+3)° (x+3)

Then x-1= A(x+3)*>+B(x+3)+C

Substituting x = -3 we obtain -4 = C

Equating the coefficient of x*we obtain 0 = A

Equating the coefficient of x we obtain 1 = 6A + B. Since A =0 we obtain B = 1.

Xx-1 1 4
Thus = -
(x+3)°  (x+3)* (x+3)°

Case IllI: The denominator D(x) is a product of distinct irreducible
quadratics (x* + B,x +C,), (X* + B,Xx +C,),...., (X* + B, X+ C, ).

N(X): Px+Q, n P,x+Q, . PX+Q,

Then 5 5 o
D(x) x“+Bx+C, x°+B,x+C, X°+BXx+C,
Example: 2x-1
(X +D(X% +2)
2x-1 _ Ax+B Dx+E

= + .
(X2 +D)(x*+2) x*+1 x°+2
Then 2x —1= (Ax+ B)(x* + 2) + (Dx + E)(x* +1)

Substituting x = 0 we obtain -1 = 2B + E ------------ (1)
Equating the coefficient of x> we obtain 0 = A+ D. i.e., D = -A --------eeeeeemmv (i)
Equating the coefficient of x* we obtain 0 = B + E. Thus B = -E =---------==--- (iii)

Substituting this into (i) we obtain E = 1 and hence B = -1
Equating the coefficient of x we obtain 2 = 2A + D.
Substituting for D from (ii) we obtain A = 2 and therefore D = -2
2x -1 _2x-1 —-2x+1
Thus — . = =+
(X*+D(x"+2) x“"+1 x°+2

Case IV: The denominator D(x) = (x* +bx +¢)* where x? +bx + ¢ is irreducible.
NO)_ Rx+Q . Px+Q,  Px+Q,

Then 2 2 2 ﬁ
D(x) x“+bx+c (X°+bx+c) (X° +bx+c)




X3
(x* +2)?
ot x® :AXJFBJr Dx+E '
(x> +2)* (x*+2) (x*+2)?
Then x® = (Ax+B)(x* +2) + Dx+E

Substituting x =0 we obtain 0 = B + E. Therefore, B = -E.

Equating the coefficient of x> we obtain 1 = A.

Equating the coefficient of x* we obtain 0 = B. Thus E = 0.

Equating the coefficient of x we obtain 0 = 2A + D. Therefore, D = -2,
x> X 2x

(x*+2)* (x*+2) (x*+2)?

Example:

L

Therefore,

Case V: D(x) is a combination of the above cases. Then, linear factors are handled as in
cases | and Il and quadratic factors are handled as in cases 1l and V.

. lo: x* —2X

SXampEE: (X +1)(x—1)2(x? +1)

Let x? —2x __A . B N C +Dx+E'
(X+D)(x-)*(x*+1) x+1 x-1 (x-1* x°+1

Then

x* =2x=AX-1)*(x* +1) + B(X +1)(x =1)(x* +1) + C(Xx +1)(x* +1) + (Dx + E)(x +1)(x —1)*

Substituting x = 1 we obtain -1 = 4C. Therefore, C = —%

Substituting x = -1 we obtain 3 = 8A. Therefore, A = g

Equating the coefficient of x* we obtain 0 = A + B + D. Therefore, B + D = —g ------- (i)
Equating the coefficient of x> we obtain 0 =-2A + C-D + E -------- (i)
Substituting x = 0 we obtain0 =A-B +C + E -------- (iii)
Subtracting (ii) from (iii) we obtain
0=3A-B+D -------- (iv)
Adding (i) and (iv) we obtain —> = 3A+2D . Thus D = —<—§—§> _ —%
Therefore B = _§+§ :E.

8 4 8
Equating the coefficient of xX* we obtain 1 =2A + C =D — E -------- (v)
Adding (ii) to (v) we obtain 1 = 2C — 2D. Thus C = %(1-%) _ —%.
Therefore by (iii) we obtainE=-A+B-C = -§+§+l _1

8 8 4 4

10



3 3 1 3.1
x* —2x 8 .8 . 4 . 4 4

Therefore PN = + + +—
(X+D(x=1)"(x +1) x+1 x-1 (x-1)°? X +1

3 3 1 _3x+1
= + -~ +
8(x+1) 8(x-1) 4(x-1° 4(x*+1)

6. Integration by Partial Fractions (Ref 1: pg. 657, Ref 2: pg. 304-309)

We resolve the rational function % into partial fractions when we wish to determine
X
| N9 gy where N is a proper fraction.
D(x) D(x)
Example:
2X+1
@ [ X
(x=D(x-2)(x-3)

From the previous section we have
2x+1 3 5 7

-DX-2)(x-3)  2(x-1) (x-2)  2(x-3)

Therefore,
J~ 2X+1 dx :J~[ 3 _ 5 N 7 ]dX
(x=D(x-2)(x-3) 2(x-1) (x-2) 2(x-3)

3.1 1 7001
'Ej(x—l)dX_SJ(x—z)dx+§j(x—3)dX

Zinfx-4-5njx-2+Injx-g+C

()I(X R

From the previous section we have x-1 __ 1 4

(x+3)° (x+3)2 (x+3)°

Therefore,

J'X;lsdxzj'[ 1 - 4 _dx
(x+3) (x+3)° (x+3)

11



J-(x+3)‘2 dx—4j(x+3)‘3dx
1 + 2 +C
(x+3) (x+3)?

3 [ dx
(X*+D(x"+2)
From the previous section we have

2x-1 :2x—1+—2x+1
(X +1)(x*+2) x*+1 x*+2
Therefore,

2x -1 2x—-1 —-2x+1
J 2 2 dX:I 2 T2
(X“+D(x“+2) X“+1 XxX°+2

]dx

= Izz(_ldx+j_fx+ldx
X +1 X°+2
:J 22X dx—f 21 dx—J. 22X dx+j;dx
x® +1 x? +1 X* +2 X% +(+/2)?
1 X
= In(x* +1) —tan " x—In(x* +2) + —tan ' —=+C
( ) ( ) 7 72
@ | X" = 2x dx
(x+1)(x-1)*(x* +1)
From the previous section we have
x* = 2x .8 3 1 -3+l
(X+D(x-D*(x*+1) 8(x+1) 8(x-1) 4(x-1* 4(x*+1)
Therefore,
x? —2x
I s dx
(X+D(x=1)°(x" +1)

=[x [ dx_; - 2x+j_32x+1
8(x + 1) 8(x -1) 4(x-1) 4(x +1)

x+1

+—jx2+ldx

-3 3 nlx - _3 E
—8In|x+]j+8ln|x ]J+ In(x +1)+4tan x+C

4(x-1) 8

7. The Definite Integral and the Area Under a Curve (Ref 1: pg. 635-636,
Ref 2: pg. 206-209, 217-218, 257-260)

12



The Greek capital letter X~ denotes repeated addition. If f is a function defined on the
integers, and if n and k are integers such that n > k, then

Zn:f(j): fK)+ f(K+1)+....+ F(n).

Area under a curve:

Suppose f is function such that f(x) >0 for all x in the interval [a, b]. Then the graph of
f lies on or above the x-axis.

Let X,,X;,......, X, be points such that a =X, < x, <....<X, =b.
Let the length of the subintervals [Xo, Xi], [X1, X2], .....[Xn1, Xn] be denoted by
ALK AL XK , A, x respectively. Then for 1 <k <n, AgX = X — Xk-1.

Let R be the region bounded by the graph of the function, the x-axis, x = a and x = b.
This region may be divided into n strips by drawing vertical line segments x = x, from the
x-axis up to the graph. If we denote the area of the k™ strip by AA, then the total area of

the region R is given by A=) A, A.
k=1

y
A
Figure 1
7] \
AA -
MAA
AA
» X
a X1 Xk Xn-1 b

We may approximate the area AxA by selecting a point x* in the interval [Xk.1, ] and
computing the area of the rectangle with height f(xc*) and width A (Figure 2).

13



y
A
Figure 2
/
» X
a Xi* X1 Xk* Xy Xn1 Xn* b
Then
D EXO)AX = F(X)A X+ T (X)A X+ oo+ F(X))AX, -mmrmmmmemmmoeeas (1)
k=1

IS an approximation of the total area A of the region R. We obtain better approximations
by increasing the number of subintervals and reducing the lengths of the subintervals.

If the limit of this sum exists as the number of subintervals approaches infinity and the
maximum length of the subintervals approaches zero, then this limit equals the area A
under the curve and is called the definite integral of f from a to b and is denoted by

_T f(x)dx.

b
In the notation _[ f (x)dx, b is called the upper limit and a is called the lower limit of the
definite integral.
For any function f (not necessarily non-negative), defined on the interval [a, b], sums of

the form (1) above may be formed (without using the notion of area). If these sums tend
to a finite limit as n, the number of subintervals tends to infinity, and the maximum of the

b
lengths Ayx tends to O, then the limit is denoted by If(x)dx and is called the definite

b
integral of fon [a, b]. If J f (x)dx exists, we say that f is integrable on [a, b].

Result:

14



If f is a function such that f (x) <0 and integrable on [a, b], then the area A of the region

bounded by the curve y = f(x), the x-axis and the lines x = a and x = b is given by
b

A:-If(x)dx.

a

Theorem:

b
If the function f is continuous on [a, b], then j f (x)dx exists.

Result:

b
If f is a function which is continuous on the interval [a, b], then J.f(x)dx is equal to the

area above the x-axis bounded by the graph of y = f(x) from a to b minus the area below
the x-axis bounded by the graph of y = f(x) from a to b.

Properties of the definite integral

b b
1) .[cf (x)dx = CJ‘ f (x)dx where c is a constant.

b

@ [(F()+g0))dx = [ f(x)dx+ [ g(x)dx
3) j. f (x)dx :j. f (x)dx +j‘ f(x)dx wherea<c<b
4) j. f(x)dx=0

(S)j- f(x)dx = —]1 f (x)dx

The Fundamental Theorem of Calculus

Let f be continuous on [a, b] and let F(x) :j f (x)dx ; i.e., F is an antiderivative of f. Then

_T f (x)dx = F(b) - F(a).

The fundamental theorem of calculus provides a simple way of computing the definite

b
integral jf(x)dx when we can find an antiderivative of f. F(b) — F(a) is often

abbreviated as F(x)]".

15



Example:

3 2
1) IX X Ly Jz.(x+1+é)dx=(X7+x+2ln|x—14)]§
_ 9 4
—(E+3+2In2)—(§+2+2ln1)
=3.5+2In2
1 X 1 1 1 =z V2
2 nt—1 tan" ——=—tan"0)=—=(2)= —
()j =B Fhegtn s )= 5% 63

(3) Find the area bounded by the graph of y = -x and the x-axis between x = -2 and x = 2.
0 2

Area = j(—x)dx - J. (—x)dx
-2 0

2 4 Figure 3
(_)2 - (T)]g

_r. =2 =@
=[0- ——1-[——-0

=2+2=4

1
N —

2 _y?2 _ 2 _(_9)2
Note: j—xdx: Xy, = @ -2 _,
’ 2 2 2 ’

Area between two curves

Suppose f and g are continuous functions such that g(x) < f(x) for a<x<b. Then the

curve y = f(x) lies on or above the curve y = g(x) between x = a and x = b. The area A of
the region between the two curves lying between x = a and x = b is given by

A= [(£(x)-g(x)dx

Example:
Find the area between the graphs of y = x* and y = -x in the interval [-1, 1]

Area between the two curves:

y Figure 4

2
=X
y 16

—1




A= T(—x —x?)dx +J1.(x2 — (=x))dx

_ X X X K
= ( 2 3)]_1+(3+ 2)]0
B 1 1. 1 1
—[O—(—§+§)]+[§+E]
=1

Change of variable in a definite integral

In computing a definite integral using the fundamental theorem of calculus, an
antiderivative _ff(x)dx is required. In section 3 we saw that sometimes it helps to

substitute a new variable u to findjf(x)dx. When a substitution is done to find

b
.[ f (x)dx, the limits of integration must be replaced by the corresponding values of u.

Example:

V4

4
(1) J'sin3 X COS Xdx
0

Let u =sinx. Then (;_u =COSX.

X
) T 1
Whenx=0,u=sin0=0,andwhenx= —, u= —.
4 J2
T 1
4 ﬁ u4 1 1
Therefore, Isin3 xcos xdx = Iusdu =—)r==
0 0 4 16
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