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1.  Vectors and Scalars
 
There are quantities in the physical world that are characterized by just their magnitude, 
such as length, temperature, time, mass and speed. These quantities are called scalars. 
Apart from the units that they are measured in, these are just real numbers. We use 
ordinary letters such as l, t, m, s to represent them. Operations with scalars are carried out 
as in usual elementary algebra. 
 
There are other quantities in the physical world that cannot be characterized by their 
magnitude alone, such as displacement, velocity, acceleration and force. These are 
characterized by both their magnitude and their direction.  Such quantities are called 
vectors. We denote vectors by bold faced letters (e.g., A, b) or letters with an arrow over 

them (e.g., . 
→→

aAB, )
 
Let A, B represent two distinct points in space. There  
exists exactly one straight line passing through both  B 
these points.  That part of the line between A and B  
and including both the end points is called a line  
segment. If the end points A and B are given a  
definite order, then the line segment is said to be  

A directed and its direction is denoted by an arrow as  
in Figure 1.  A is then called the initial point and B Figure 1 
 the terminal point of the directed line segment.  
 
A directed line segment has both magnitude (distance between the two end points) and 
direction.  
 
We define a vector as a directed line segment. 
 
 
2. Equality of Vectors 
 
Two vectors a and b are said to be equal if they have the  
same magnitude and direction. Thus in Figure 2,  a = b = c.  
Directed line segments which are equal in length and are in  
the same direction are called equivalent directed line segments.  
Thus any vector corresponds to a collection of equivalent  
directed line segments. 
 
 

c 
a b 

Figure 2 
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3.  Magnitude of a Vector
 

The magnitude or modulus of the vector a =  is the length of the line segment joining 
the points A and B. This is a non-negative number and is denoted by the symbol ⎢a ⎢or a 

or ⎢ ⎢. 

→

AB

→

AB
 
 
4. Special Vectors
 
Null Vector:  A vector whose initial and terminal points coincide is called a null vector  
                        (or zero vector). This vector has magnitude equal to zero and no specific  
                        direction. It is denoted by 0. 
 
Unit Vector:  A vector with unit magnitude (length equal to 1) is called a unit vector.  
 

           If A is a vector which is non-zero, then a = A/ ⎢A ⎢ is a unit vector in the  
same direction as A. Any vector A can be written as A = ⎢A ⎢a where a is a 
unit vector in the same direction as A. 

 
Negative of  
a Vector     :  If a is a vector, then –a, which is called the negative of vector a is a vector  
                     which has the same magnitude as a but is in the opposite direction to a. 
 
Free Vector: A vector whose position in space is not fixed is called a free vector (or  
                        sliding vector). 
 
Localised 
Vector        : A vector whose position in space is fixed is called a localized vector (or  
                        bound vector) 
 
Co-initial  
Vectors      : Vectors with the same initial point in space are called co-initial vectors  
                        (or concurrent vectors) 
 
 
5. Vector Addition and Subtraction
 
Addition of Vectors 
 
Let a and b be two vectors.  Consider the representation of  

c = a + b the vectors a and b such that the initial point of b is placed  
on the terminal point of a. Then the vector c with initial  
point the initial point of a, and terminal point the terminal  
point of b is called the sum or resultant of the vectors a 
 and b and is denoted by a + b (i.e., c = a + b). (Figure 3)  

a 

b 

Figure 3 
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If a = a′  and b = b′  then a + b = a′ + b′ . This is so since the two triangles obtained are 
congruent. (Figure 4)  
 
 
 
 

c = a + b 

a 

Figure 4 

b 
b′ 

a′ 

c′ = a′  + b′ 
 
 
 
 
 
 
 
 
 
 

c  

c = a + b 

a 

Figure 6 

b 
b 
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The addition of more than two vectors 
 
The sum of more than two vectors is  
obtained by extension of the concept of  
addition defined above. Figure 5 indicates  
how the sum e of the vectors a, b, c and d  
is found. 
 
 
 
 
 

The sum of the vectors a = and b = can be constructed as the diagonal of the 
parallelogram PQRS.  This description of vector addition is called the Parallelogram 
Law of vector addition. (Figure 6) 

→

PS
→

PQ

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

b 

Figure 5  

d 
 a + b + c  

a + b  

e = a + b + c + d 
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Subtraction of Vectors 
 
The difference of vectors a and b denoted by a – b is 
the vector c such that c + b = a. Subtracting a vector  
from another is the same as adding the negative of the  
second to the first: a – b = a + (- b) . (Figure 7) 
 
 
 
 
 
6. Properties of Vector Addition  
 
 For any vectors a, b, c the following hold. 
 

1. a + 0 = a = 0 + a  (0 is the additive identity) 
2. a + (-a) = 0 = (-a) + a  (-a is the additive inverse of a) 
3. a + b = b + a   (Commutative Law for Addition) 
4. a + (b + c) = (a + b) + c (Associative Law for Addition) 

 
 
7.  Multiplication of a Vector by a Scalar
 
Let s be a scalar and a a vector. Then the vector sa is defined to be the vector whose 
magnitude is ⎢s ⎢⎢a ⎢ and which points in the same direction as a if s is positive, or in the 
opposite direction if s is negative. If s = 0, then sa is the null vector 0 whose magnitude is 
zero and which has no direction. For any scalar s, sa is called a scalar multiple of a. 
 
Examples: 
 

(i) 2a is the vector whose magnitude is twice that of a and is in the same 
direction as a. (Figure 8a) 

(ii) 
2
1

− a is the vector whose magnitude is half that of a and is in the opposite 

direction to a. (Figure 8b) 
 
 
 
 
 
 
 
 

 

c = a - b 

b 

-b 

a 

Figure 7 

a 
a 

 a 
2
1

−2a 

Figure 8b 
Figure 8a 
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8. Properties of Scalar Multiplication  
 
For any two vectors a and b, and any two scalars s and t the following hold. 
 

(i) 0a = 0 
(ii) 1a = a 
(iii) (-1)a = -a 
(iv) s(ta) = (st)a = t(sa)   
(v) (s + t)a = sa + ta 
(vi) s(a+b) = sa + sb 

 
 
9.  Properties of the Magnitude of a Vector 
 

(i) ⎢a ⎢= 0 if and only if a = 0 
(ii) ⎢a ⎢= ⎢-a ⎢ 
(iii) ⎢a + b ⎢≤ ⎢a ⎢+ ⎢b ⎢   (Triangle Inequality) 
(iv) ⎢⎢a ⎢- ⎢b ⎢⎢≤ ⎢a - b ⎢ 
 
 
Note: The triangle inequality follows from the fact that the length of any side of a 
triangle does not exceed the sum of the lengths of the other two sides. 
 
Proof of (iv): 
 
⎢a ⎢= ⎢a - b + b ⎢≤ ⎢a - b ⎢+ ⎢b ⎢ (by the triangle inequality) 
Therefore  ⎢a ⎢- ⎢b ⎢≤ ⎢a - b ⎢. 
 
⎢b ⎢= ⎢b - a + a ⎢≤ ⎢b - a ⎢+ ⎢a ⎢ (by the triangle inequality) 
Therefore ⎢b ⎢- ⎢a ⎢≤ ⎢b - a ⎢= ⎢a - b ⎢. 
 
Thus ⎢⎢a ⎢- ⎢b ⎢⎢≤ ⎢a - b ⎢. 
 
 

10. Position Vectors
 

Let O be a fixed point in space (called the origin).  If P is any point in space and = r, 
we say that the position vector of P with respect to the origin O is r. 

→

OP

 
Note: When we speak of points with position vectors it is to be understood that all the 
vectors are expressed with respect to the same origin. 
 
Result 1: If A and B are any two points with position vectors a and b respectively, then 

= b – a. 
→

AB
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Proof:  
→

OA  = a and = b.   Also + = . 
→

OB
→

OA
→

AB
→

OB

Therefore, a +  = b. Hence = b – a. 
→

AB
→

AB
 
(Figure 9) 
 
 
 
11. Vectors in a Plane
 
A Cartesian coordinate system consists of a fixed point O, called the origin, and two 
mutually perpendicular axes, Ox and Oy (or just x and y) with the same unit of length in 
both axes. Any point in a plane can be represented in a Cartesian coordinate system. This 
sets up a 1 – 1 correspondence between the points in the plane and ordered pairs of real 
numbers. 
 
 
 
Consider a Cartesian coordinate system Oxy.  
Let i denote the unit vector parallel to the x  
axis in the positive direction, and let j denote  
the unit vector in the positive y direction. i, j  
are called base vectors and the set {i, j} is  
said to form a basis for the vectors in the  
plane. (Figure 10) 
 
 
 
Any non-zero vector in the plane can be  
represented as a vector with initial point  
O and written uniquely as a = a1i  + a2j   
(Figure 11). The numbers a1 and a2 are  
called the components of the vector a in  
the x and y directions respectively. The  
component of a vector in a given direction  
is the orthogonal projection of the vector in  
that direction. a1i  and a2j are called the  
component vectors of a in the x and y  
directions respectively. If the point A has  
coordinates (a1, a2), then a = a1i  + a2j  is  
called the position vector of A(a1, a2) with  
respect to the origin O. Vector a may also be  
written as the ordered pair (a1, a2). 
 

a 

Figure 9 

B 

b 

O A 

y Figure 10 

j x 
i O 

y 

A(a1,a2) 

a a2 

Figure 11 

x j 

a1
i O 
α 
β 

 6



The distance of A from O can be determined by using Pythagoras’ theorem. The distance 

from O to A, ⎢ ⎢ = ⎢a ⎢= 
→

OA 2
2

2
1 aa +  (Figure 11). 

 
Suppose α is the angle between the vector a and the positive x direction.  

Then a1 = ⎢a ⎢cos α,  a2 = ⎢a ⎢sin α, and tan α = 
1

2

a
a

.  

If β is the angle between the vector a and the positive y direction, then α and β are called 
direction angles. The numbers cos α and cos β are called direction cosines of the vector 

.  
→

OA
a

1cos a
=α , 

a
2cos

a
=β  in terms of components and, cos β  = sin α . 

1coscos 22 =+ βα  and (cos α, cos β) is a unit vector in the same direction as a. 
 
 
To determine the components of a vector, any directed line segment representing the 
vector can be used. If P1(x1, y1) and P2(x2, y2) are points in the xy plane, the vector 
represented by the directed line segment P1P2 (initial point P1 and terminal point P2) is          
(x2 – x1)i + (y2 – y1)j. Any other directed line segment equivalent to P1P2 would give the 
same components (Figure 12). 
 
Example: 
 y 
 P2(x2, y2) 
 
 

Q2(x2 + a, y2 - b)  
 
 
 
 
 
 
 
 
 
 
 
In Figure 12, the vector represented by the directed line segment P1P2 is                            
(x2 – x1)i + (y2 – y1)j.  The vector represented by the directed line segment Q1Q2 which is 
equivalent to P1P2 is ((x2 + a) – (x1+ a))i + ((y2 – b)  – (y1- b))j = (x2 – x1)i + (y2 – y1)j. 
Thus the two equivalent directed line segments give the same components. 
 

The magnitude of the vector ,  ⎢ ⎢= 
→

21PP
→

21PP 2
12

2
12 )()( yyxx −+− . 

 

x 

Q1(x1 + a, y1 - b) 

Figure 12 

P1(x1, y1) 

O 
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If a = a1i  + a2j  and b = b1i  + b2j   and s is a scalar, then  
 

(i) a + b = (a1 + b1 )i  + (a2 + b2)j   
 

(ii) a - b  = (a1  - b1 )i  + (a2 - b2)j   
 

(iii) sa = sa1i  + sa2j  
 
If the vectors are represented by ordered pairs a =(a1, a2) and b =(b1, b2), then the above 
equations become 
 

(i) a + b =  (a1 + b1 , a2 + b2)   
 
(ii) a - b  = (a1 - b1 , a2 - b2)   

 
(iii) sa = (sa1, sa2) 

 
12. Vectors in Three-Dimensional Space  
 
As in the case of a point in a plane, any point in space can be represented in a Cartesian 
coordinate system which consists of a fixed point O, the origin, and three mutually 
perpendicular axes, Ox, Oy and Oz with the same unit of length along all three axes.  The 
axes are placed in such a way that they form a right-handed set.  This means that if a 
screw is placed at the origin and is turned in the sense from the positive x axis to the 
positive y axis, then it moves in the direction of the positive z axis.  
 
A point A is located within this coordinate system by giving its directed distances from O 
in the directions of the positive x, y and z axes. Therefore, if the coordinates of A are     
(a1, a2, a3), this means that A is a1 units from O in the direction of Ox, a2 units from O in 
the direction of Oy and a3 units from O in the direction of Oz.  The distance from O to A 

is 2 2
1 2 3a a a+ + 2 . 

y  
Let i denote the unit vector parallel to the x axis  
in the positive direction, j the unit vector in the  
positive y direction and k the unit vector in the  
positive z direction respectively. i, j, k are called  A(a1,a2,a3) 
base vectors and the set {i, j, k} is said to form a  
basis for the vectors in space. Any non-zero  
vector a in space can be represented as a vector  
with initial point O and written uniquely as  
a = a1i  + a2j + a3k  (Figure 13). The numbers  
a1, a2 and a3 are called the components (or  
rectangular components) of the vector a in the  
x, y and z directions respectively. a1i, a2j and  
a3k are called the component vectors (or  
rectangular component vectors) of a in the x, y and  

O x 

z 

i 
j 

k 
a1 

a3 

a2 

a 

Figure 13 
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z directions respectively. If the point A has coordinates (a1, a2, a3), then a = a1i  + a2j + a3k 
is called the position vector of A(a1, a2, a3) with respect to the origin O and is denoted by 

. Vector = a may also be written as (a
→

OA
→

OA 1, a2, a3). 
 

⎢  ⎢= ⎢a ⎢= 
→

OA 2
3

2
2

2
1 aaa ++  

 
Suppose α, β and γ  are the angles between the vector a and the positive x, y and z 
directions respectively. Then a1 = ⎢a ⎢cos α, a2 = ⎢a ⎢cos β   and  a3 = ⎢a ⎢cos γ . α , β and 
γ  are called direction angles. The numbers cos α , cos β and cos γ  are called direction 

cosines of the vector .  In terms of components the direction cosines are given by 
→

OA

a
1cos a

=α , 
a

2cos a
=β  and 

a
3cos

a
=γ .  and  1coscoscos 222 =++ γβα

(cos α, cos β, cos γ ) is a unit vector in the same direction as a. 
 
 
If A and B are two arbitrary points in space with position vectors a = a1i  + a2j + a3k   
and b = b1i  + b2j + b3k respectively, then  
→

AB = b – a = (a1i  + a2j + a3k) – (b1i  + b2j + b3k) = (b1 – a1)i + (b2 – a2)j + (b3 – a3)k. 
 

The magnitude of the vector is ⎢ ⎢= 
→

AB
→

AB 2
33

2
22

2
11 )()()( ababab −+−+− . 

 
As in the two dimensional case, vector addition, vector subtraction and scalar 
multiplication proceed component wise. 
 
If a = a1i  + a2j  + a3k  and b = b1i  + b2j  + b3k  and s is a scalar, then  
 

(i) a + b = (a1 + b1 )i  + (a2 + b2)j  + (a3 + b3)k   
 
(ii) a - b  = (a1  - b1 )i  + (a2 - b2)j  + (a3 - b3)k   

 
(iii) sa = sa1i  + sa2j + sa3k 

 
If the vectors are represented by a =(a1, a2, a3) and b =(b1, b2, b3), then the above 
equations become 
 

(i) a + b =  (a1 + b1 , a2 + b2, a3 + b3)   
 
(ii) a - b  = (a1 - b1 , a2 - b2, a3 – b3)   

 
(iii) sa = (sa1, sa2, sa3) 
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13. The angle between two vectors  
 

Let = a and = b be any two vectors.  Let  
→

AB
→

CD
→

1OA a

and be respectively the representations of the  
→

1OC
vectors a and b with initial point O.  The angle θ   

between and such that 
→

1OA
→

1OC πθ ≤≤0  is called the  
angle between the vectors a and b. (Figure 14) 
 
If  θ = 0 or πθ = , the vectors are said to be parallel. 

If 
2
πθ = , then the vectors are said to be perpendicular. 

 
 
 
If A and B are two arbitrary points in space with position vectors a = a1i  + a2j + a3k  and 

b = b1i  + b2j + b3k respectively, then = (b
→

AB 1 – a1)i + (b2 – a2)j + (b3 – a3)k. 
Therefore, . 2

33
2

22
2

11
2 )()()( abababAB −+−+−=

 
If θ  is the angle between OA and OB, we have by  
applying the law of cosines to triangle OAB, 
 
AB2 = OA2 + OB2 - 2 OA. OB .cos θ. 
Therefore  

cos θ  = 
OBOA

ABOBOA
.2

222 −+        

          = 
2

3
2

2
2

1
2

3
2

2
2

1

3

1

22
3

2
2

2
1

2
3

2
2

2
1

.2

)()()(

bbbaaa

abbbbaaa
i

ii

++++

−−+++++ ∑
=  

          =
2

3
2

2
2

1
2

3
2

2
2

1

332211

. bbbaaa

bababa

++++

++ . 

 
Note:  If A and B are two arbitrary points in a plane with position vectors a = a1i  + a2j   
           and b = b1i  + b2j  respectively, and θ  is the angle between OA and OB, then  

           cos θ  = 
2

2
2

1
2

2
2

1

2211

. bbaa

baba

++

+ . 

 
 
 
 
 

a 

Figure 15 

b 

O A 

B 

θ 

Figure 14 

B A 

b 

O θ 

D 

C1 
C 

b 

A1 a 
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14. The Ratio Theorem  
 
Let A and B be two given distinct points with  r A 
position vectors  and bar respectively. If the point  

rR with position vector r  divides the line segment  
AB in the ratio m : n (with ,0,0 ≠≠ nm 0≠+ nm ) 

then rr  = 
mn

bman
+
+

rr
.  

 
Proof: 

If R divides AB in the ratio m : n, then 
n
m

RB
AR

= , 

or nAR = mRB.  

(Here 
n
m  is positive or negative according as R  

divides AB internally, as in Figure16, or externally 
as in Figure 17). 

Since AR and RB lie on the same line, . 
→→

= mRBnAR
i.e., n( rr – ) = m(ar b

r
– rr ) . 

Therefore, (n + m) rr = n  + mar b
r

, and hence 

rr = 
mn

bman
+
+

rr

. 

Note: If R is the midpoint of AB, then r =
2

ba
rr

+ . 

 
 
 
15. Some Definitions and Results  
 
1. Two non-zero vectors a and b are parallel if and only if there exists a scalar t such 

that a = tb.  
 

If a = (a1, a2, a3) and b = (b1, b2, b3), then  a = tb for some scalar t if and only if 
(a1, a2, a3) = (tb1, tb2, tb3). i.e., a and b are parallel if and only if a1 = tb1, a2 = tb2, 

a3 = tb3. i.e., a and b are parallel if and only if t
b
a

b
a

b
a

===
3

3

2

2

1

1  (when 

). Therefore in terms of components, the condition for 

parallelism is expressed by the equation 

,01 ≠b ,02 ≠b 03 ≠b

3

3

2

2

1

1

b
a

b
a

b
a

== . 

2. Suppose the two non-zero vectors a and b are perpendicular.  

ar  

Figure 16 

b
r

 O 

B 
rr  

m 
R 

n 

ar  

Figure 17 

b
r

 

O 

A 

R
rr  

m 
B 

n 
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If a = (a1, a2, a3) and b = (b1, b2, b3) and θ  is the angle between a and b, then 

2
πθ =  and cos θ = 

2
3

2
2

2
1

2
3

2
2

2
1

332211

. bbbaaa

bababa

++++

++ = 0.  

This gives us a1b1 + a2b2 + a3b3 = 0.  
Therefore, in terms of components, the condition for perpendicularity is 
expressed by the equation  a1b1 + a2b2 + a3b3 = 0. 
 

3. Vectors lying on parallel straight lines or on one and the same straight line are 
called collinear. Two vectors are said to be non-collinear if they are not parallel 
to the same straight line.  

 
4. Three distinct points A, B, C with position vectors ar , b

r
,  respectively are 

collinear (i.e., the three points A, B, C lie on the same straight line) if and only if 
there exists scalars x, y, z not all zero such that x

cr

ar+ yb
r

 + z cr  = 0 and x + y + z = 
0. 

 
Proof.  Suppose the three distinct points A, B, C with position vectors ar , b

r
, 

respectively are collinear. Suppose C divides AB in the ratio m : n. Then               

= 

cr

cr
mn

bman
+
+

rr
. Therefore, n ar  + mb

r
 = (n + m) cr .   

Let x = n, y = m and z = - (n + m). 
Then x  + yar b

r
 + z = 0 and x + y + z = 0. cr

 
Conversely, suppose there exists scalars x, y, z not all zero such that  
x  + ybar

r
 + z = 0 and x + y + z = 0.  cr

Without loss of generality, let us assume that 0≠z . Then z = - ( x + y) and 

therefore, c  = 
r

yx
byax

+
+

rr

. i.e., C divides AB in the ratio y : x and A, B and C are  

collinear. 
 
5.  If a particle moves from an initial position (x1, y1, z1) to another position               

(x2, y2, z2), the displacement of the particle is the vector represented by the  
directed line segment extending from its initial position to its final position. This  
vector is (x2 – x1)i + (y2 – y1)j + (z2 – z1)k. Thus if the initial position vector is  

=
→

1OR  x1i  + y1j + z1k  and the final position vector is  x=
→

2OR 2i  + y2j + z2k, then  

the displacement is . 
→→→

−= 1221 ORORRR
 
6.  Vectors that are parallel to the same plane are said to be coplanar. 
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16. Scalar Product   
 
The scalar product of the two vectors a and b, denoted by a.b (pronounced a dot b) is 
the number a.b = ⎢a⎢⎢b ⎢cos θ   where θ  ( πθ ≤≤0 ) denotes the angle between the 
vectors.  The scalar product is also called the dot product or the inner product. 
 
From Figure 18 we identify ⎢b ⎢cos θ  as the component of b parallel to a, that is, the 
length of the orthogonal projection of b in the direction of a, with the appropriate sign.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus we can interpret a.b as  
 
(length of a)(signed component of b along a),  
 
and since the definition is symmetric in a and b, it can also be interpreted as   
 
(length of b)(signed component of a along b). 
 
It follows that the components of a in the x, y, z directions equal a.i, a.j and a.k 
respectively.   
Thus the vector a can be expressed as a = (a.i)i + (a.j)j + (a.k)k. 
 
If a = 0 or b  = 0, then ⎢a ⎢ = 0  or ⎢b ⎢ = 0 and hence a.b = 0.   

Also, if a and b are perpendicular, then 
2
πθ =  and hence a.b = ⎢a ⎢⎢b ⎢cos (

2
π ) = 0 even 

if both vectors are non-zero. 
 
Thus for the unit vectors i, j and k of the coordinate axes we have  
i.i = j.j = k.k = 1 and i.j = j.k = k.i = 0. 
 
If a, b and c are arbitrary vectors and s is a scalar, then 

(i) a.b = b.a   Commutative Law 
(ii) a.(b + c) = a.b + a.c  Distributive Law 
(iii) a.(sb) = (sa).b = s(a.b) 

a 

Figure 18 

b 

O A 

B 

θ 
   ⎢b⎢cos θ   

A 
θ 

b 

  -⎢b⎢cos θ   

B 

a
O 
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If a = a1i + a2j + a3k  and b = b1i + b2j + b3k , then using the above facts we obtain 
 
a.b = (a1i + a2j + a3k).(b1i + b2j + b3k) = a1b1 + a2b2 + a3b3. 
 
In particular when a = b, we obtain  
a.a = a1

2 + a2
2 + a3

2 = ⎢a ⎢2 

Thus ⎢a ⎢= a.a  
 
 
17. Vector Product   
 
The vector product of the two vectors a and  
b, denoted by a × b (pronounced a cross b), is  
defined to be the vector a × b = |a||b|sinθ n 
where θ  (0 ≤ θ ≤ π ) is the angle between  
the vectors a and b, and n is a unit vector  
perpendicular to both a and b, such that a, b  
and n form a right handed system. (Figure 19) 
 
 
a × b is also called the cross product of the vectors a and b. 
 
We note that | a × b| = |a||b|sinθ  is the area of the  
parallelogram determined by the vectors a and b 
(computed as base times height). (Figure 20) 
Therefore the area of the triangle determined by the  

vectors a and b is equal to 
2
1
| a × b| = 

2
1
|a||b|sinθ . 

 
 
 
If a = 0 or b  = 0, then ⎢a ⎢ = 0  or ⎢b ⎢ = 0 and hence a × b = 0.   
Also, if a and b are parallel then 0=θ  and hence  a × b = ⎢a ⎢⎢b ⎢sin 0 n = 0. 
 
 
 
Thus for the unit vectors i, j and k of the coordinate  
axes we have  
 
i × i = j × j = k × k = 0  
i × j = k,  j × k = i,  k × i = j 
i × k = -j,  j × i = -k,  k × j = -i. 
 
 

a 

Figure 20 

b 
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If a, b and c are arbitrary vectors and s is a scalar, then 
 

(i) a × b = - b × a  
(ii) a × (b + c) = (a × b) + (a × c)  Distributive Law 
(iii) a × (sb) = (sa) × b = s(a × b) 

 
Note:  The commutative and associative laws fail for the vector product. i.e., 

(i) a × b  ≠ b × a  
      (ii)  (a × b) × c ≠ a × (b × c)  
 
If a = a1i + a2j + a3k  and b = b1i + b2j + b3k , then using the above facts we obtain 
 
a × b = (a1i + a2j + a3k) × (b1i + b2j + b3k) 
         = (a2b3 – a3b2)i + (a3b1 – a1b3)j + (a1b2 – a2b1)k 
 
This may conveniently be written in determinant form: 

a × b = 

321

321

bbb
aaa
kji

 

 
 
18. Triple Scalar Product   
 
The triple scalar product of the three vectors a, b and c, denoted by [a, b, c], is defined 
by [a, b, c] = a . (b × c)  
 
If a = a1i + a2j + a3k,  b = b1i + b2j + b3k  and c = c1i + c2j + c3k,  
then  
 
[a, b, c] = a. (b × c) 
   = (a1i + a2j + a3k). [(b2c3 – b3c2)i + (b3c1 – b1c3)j + (b1c2 – b2c1)k] 
   =  a1(b2c3 – b3c2) + a2 (b3c1 – b1c3) + a3 (b1c2 – b2c1) 

    =

321

321

321

ccc
bbb
aaa

 

Therefore, [i, j, k] = 
100
010
001

= 1 

 
The modulus of the triple scalar product 
[a, b, c] is equal to the volume of the  
parallelepiped constructed with a, b, c as 
co-terminal edges as in Figure 22.  

c

Figure 22 

b 

a

θ 
⎜a⎜cos θ
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The base of the solid is a parallelogram whose area is given by | b × c|. The height of the  
parallelepiped is the length of the component of a perpendicular to the base, which equals  
the magnitude of ⎜a⎜cos θ , where θ  is the angle between a and b × c. i.e., the volume of 
the parallelepiped with co-terminal edges a, b, c is the modulus of ⎜a⎜cos θ | b × c|, which 
is the modulus of [a, b, c] = a. (b × c) 
 
From the properties of determinants, it follows that [a, b, c] = [b, c, a] = [c, a, b] 
 
The sign changes whenever two of the vectors are interchanged; for example, 
[a, b, c] = - [a, c, b] 
 
Also, the position of the dot and the cross can be changed freely; for example, 
a. (b × c)  = [a, b, c] = [c, a, b] = c. (a × b) = (a × b). c 
i.e., a. (b × c)  = (a × b). c 
 
The triple scalar product is also linear in each of its factors; i.e., 
[sa + b, c, d] = s[a, c, d] + [b, c, d] 
[a, sb + c, d] = s[a, b, d] + [a, c, d] 
[a, b, sc + d] = s[a, b, c] + [a, b, d] 
 
Clearly, if any two of the vectors are equal, then the triple scalar product will be zero. 
 
The volume of a tetrahedron with a, b, c as  
co-terminal edges (as in Figure 23) is obtained as 
follows: 

Volume = 
3
1
× (area of base) × (height) 

              = 
3
1
| (

2
1
| a × b|) ⎜c⎜cos θ  | = 

6
1
| (a × b). c| 

 
Result: 
Let a, b, c be three non-zero, non-parallel vectors.  Then a, b, c are coplanar if and only if 
a.(b × c) = 0. 
 
Proof: If a.(b × c) = 0, then the vector a is perpendicular to the vector b × c. Therefore a 
lies on the plane containing the vectors b and c or in a plane parallel to this plane. Hence 
a, b, c are coplanar. On the other hand, if a, b, c are coplanar, then b × c is perpendicular 
to a and hence a.(b × c) = 0.  
 
19. Vector Identities  
 

(i) a × (b × c) = (a.c)b - (a.b)c 
(ii) (a × b) × c = (a.c)b - (b.c)a 
(iii) (a × b) × (c × d) = [a, c, d]b - [b, c, d]a 
(iv) (a × b) . (c × d) = (a.c)(b.d) - (a.d)(b.c) 

b 

Figure 23 

θ 

a 

c

⎜ c ⎜cos θ 
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