IT3303: Mathematics for Computing |1

Matrices

1.1 Definition of a Matrix

A matrix is an array of m x n elements arranged in m rows and n columns. Such a matrix
A is usually denoted by

a.l 1 a12 coe aln
A: . :[aij]mxn
Where @ ay;,......... A are called the elements of the matrix

The element @;; is called the ij™ entry of the matrix and it appears in the i row and the

j™ column of the matrix. A matrix with m rows and n columns is called an m x n (read m
by n) matrix and we say that the matrix is of order m x n. We often denote matrices by
capital letters

1.2 Column and row matrices
If a matrix A is such that A consists of just one row, then A is said to be a row matrix

For example

2 4 7)

1x3

1s a row matrix with three elements.
Note: In a row matrix, m=1

If a matrix A is such that A consists of just one column, then A is said to be a column
matrix.

-3
6
90

For example

3x1



is a column matrix with three elements.

Note: In a column matrix, n=1

1.3 Different Types of Matrices and their Properties
1.3.1 Square Matrix

If in a matrix A, the number of rows equals the number of columns, then A is said to be a
square matrix. Ifthe number of rows in a square matrix is n, then A is called a matrix of
order n.

1 2
342><2

is a square matrix of order 2.

1.3.2 Diagonal Matrix

Let A = (@;;) be a square matrix of order n. Then A is said to be a diagonal matrix if

aij = 0 whenever i #j, where i,j € {1, 2,..... n}. The elements @;; ,wherei e {1,2,.....

n} are called diagonal elements.

For example

0
0

5
0
0 0

S N O

3x3
is a diagonal matrix of order 3.
Note that the diagonal elements of a diagonal matrix may also be zero.

1.3.3 Null or Zero Matrix

Let A =(a;j) be an m x n matrix. Then A is said to be a null or zero matrix if a;j=0
foralli e {1,2,.m},j e {1,2,..n}.

0 00
0 00

For example



1s a null matrix of order 2 x 3.

1.3.4 Symmetric Matrix

Ann x nmatrix A = (&;;) is called a symmetric matrix if a;;= a;; foralli,j e {1,2,

...n}.

For example
4 0 1
2 5 =2
0 5
I -2 1 9

is symmetric.
Note: a symmetric matrix is a square matrix.

1.3.5 Skew-symmetric Matrix

Ann X nmatrix A = (@ ) is called a skew-symmetric matrix if ajj=- a;; foralli,j e

{1,2, ...n}.

For example 0O 2 -4
-2 0 0
4 0 0

3x3
is skew-symmetric.

1.3.6 Upper Triangular Matrix

Let A be an n x n square matrix such that all the entries below the diagonal are zero; i.e.
ajj = 0 whenever i > j, where i, j € {1, 2,....n}. Then A is said to be an upper triangular

matrix.

For example

oS O O
S = D
S O

3x3



is a 3 x 3 upper triangular matrix.
Note that the diagonal elements of an upper triangular matrix need not be zero.
1.3.7 Lower Triangular Matrix

Let A be an n x n square matrix such that all the entries above the diagonal are zero; i.e.
ajj = 0 whenever i <j, where i, je {1, 2,....n}. Then A is said to be a lower triangular

matrix.

For example —4

N OO
- o O

2 3x3

is a 3 x 3 lower triangular matrix.

Note that the diagonal elements of a lower triangular matrix need not be zero.

1.3.8 Identity Matrix

Suppose A is an n x n diagonal matrix such that all the diagonal elements are equal to 1.
Then A is said to be an identity matrix of order n.

For example

1 0
0 1
0 0

—_ o O

3x3

is an identity matrix of order 3.
Note that identity matrix is a square matrix.

1.3.9 Equality of Matrices

Two matrices A = (aij )and B = (bij ) are said to be equal if A and B have the same

order, say m X n, and if aij = bij forallie {1,2,...,m}, forallj e {1,2,...,n}.

For example

3 4 9 3 49
{16 25 64J_ 16 25 64



1.4 Matrix Addition

Let A=(a;j)and B= (bij ) be two matrices having the same order, say m x n. We
define the sum of A and B denoted by A + B to be the matrix C = (Cij ) where Cjj= ajj +
bjj foralli € {1,2,...m} and j € {1,2,...n}.

Example.

1 0 8 3 2 0
Let A= 1 4 and B= s _4 1 Then

4 2 8
A+B=
55

1.5 Scalar Multiplication of a Matrix

Let A = (@jj) be a m x n matrix . The product of the scalar k and the matrix A, denoted
by k.A (or kA) is the matrix B = (bij ) where bij = kaij foralli e {1,2,...m} andj €{1,
2,...n}.

Example. 123
LetA=4 5 6 andk=-2 then
7 8 9
-2 -4 -6
kA= -8 —-10 -12
-14 -16 -1I8

Notation: We write

— -A for -1xA and
— A-Bfor A+ (-B)

Results:
Let A, B and C be three matrices of the same order. Then the following properties hold.

~ A+B=B+A.
~ A+B+0)=(A+B)+C.



— (k]kz)A = k]( sz)

- (kit ko)A =kA + kA.
— k(A +B)=KA +kB.

- 1A =A

- OA mxn 0 mxn

1.6 Matrix Multiplication and its Properties

Let A= (aij )be a 1 x n row matrix and B = (bij ) be anx I column matrix. Then we

define the product of the row matrix A and the column matrix B by

br 1
b1
AB = (al l’alz, ......... aln )X . = [al lbll + a12b21 + ........ + alnbnl ]le

bnp

Now let A = (aij Jmxp and B =( bij )p xn be any two matrices of orderm x p and p x n

respectively. Then the product AB is defined as the matrix C of order m x n whose ij"

entry is obtained by multiplying the i row of A by the j™ column of B. That is, if C =
( Cij )m X 1y

=(ai1,ai2, ......... aip)x } =[ai1b1j +ai2b2j + . + a;

I = Z aji Py
k=1

Note: The product of two matrices A and B is defined only when the number of columns
of A is equal to the number of rows of B.



Example:

(1 2] (1 ~1 0)
Let A= and B= then
3 4),, 2.0 Uy,

11422 1.-1420 1.0+2.1
ABZ (31442 3.-1440 3.0+4.1),,

( 5 -1 2)
11 -3 4),,
Note: Matrix multiplication is not commutative. That is, in general, AB # BA.

Results : Let A = (aij ), B= (bij )and C = (Cij ), be three matrices and let

k be a constant. Then,
- if Aismx n and B is n x p, then k(AB) = (kA)B = A(kB).
- if Band C are m x n and A is n x p, then (B + C)A = BA + CA.
- if Aismx nand B and C are n x p, then A(B+ C)=AB + AC.
- if Aismxn,BisnxpandCispxq, then A(BC) =(AB)C.

- if A is an n x m matrix, and I is the n x n identity matrix, then [A = A. Also if I is
the m x m identity matrix, then Al = A.

1.7 Transpose of a Matrix and Orthogonal Matrix

1.7.1 Transpose of a Matrix

Let A= (aij ) be an m x n matrix. Then the transpose of A denoted by A" is the n x m
matrix(bij)where bij = aj; forallie {1,2,...,n}, je {1,2,....,m}.



Example:

Let A=

Dhn W =
(@) NN AN O

1 3 5
the AT =
2 4 6

Results: Let A = (aij ), B= (bij ) be m x n matrices, and let C = (Cij ) be an n x p matrix.
Then,

-(A+B)'=A"+B'
- (A=A
- (AQ)'=C'A"

1.7.2 Orthogonal Matrix

A square matrix A = (&;;) is said to be an Orthogonal matrix if

AAT=ATA =1
For example
Cos¢ -Sin@
Sind Cosé

is an orthogonal matrix of order 2.
1.7.3 Invertible Matrices

Let A be an n x n square matrix. We say that A is invertible if there exists a n X n matrix
B such that AB = BA =1, where [, is the n x n identity matrix.

Example:



0 -1 3 -1 1
1 O0|andB=|-15 6 -5 then
1 3 5 =2 2

Let A=

S N

AB=Iland BA=1

We call B the inverse of A and denote it by A™

Note:
1.

If B is an inverse of A, then A is also an inverse of B

If A'=B, then B! =A

2. Inverse of a matrix is unique

3. Every square matrix is not invertible

4. (A=A

5. (AB)'=B'A"

5 If A is an invertible diagonal matrix with diagonal elements 4 IE then A is also a
diagonal matrix with diagonal elements 1/Q; j

7. T'=1

1.8 Determinants

Every square matrix A is associated with a scalar called the determinant of A, and is
denoted by |A].

Let A= (aij) be a square matrix of order one. Then we define |A[ = &)

1.8.1 Determinants of matrices of order two

Let A = (@jj) be a square matrix of order two, i.e.,

all al2

aZl 22



Then we define |A| = a.l 1a22 - alzazl

Example:

5 1
LetA= (2 -3 )

Then |A]=5x(3)-1x2=-17

1.8.2 Determinants of matrices of order three

Let A= (g i ) be a square matrix of order three, i.e.,

Then we define
[Al=a; My —a;pMyy +a13My3

where mij is the determinant of the matrix of order 2 obtained by deleting the row and

column containing aj; .

Example:

1 0 2
LetA= |2 1 2

-1 0 -1

1 2 2 2 2 1
Al=1x 0 —1 -0x 1 -1 +2x 1 0

10



A|=1x(-1)=0x(0)+2x (1)

=1

1.8.3 Properties of Determinants
- Let A be a matrix of order n. Then |[A"| = A

Eg.
1 3

2 4

I 2
3 4

- Let A be a square matrix of order n. Then |kA|=k"|A| where k is a scalar.
2 4 1 2

Fe 1 2
2 —
(3 4j 6 8 3 4

- Let A be a square matrix of order n. If any two rows (or columns) of A are identical,
then |[A|=0

2

Eg.

- Let I be the identity matrix of order n. Then |I| =1

1 00

Eg.
LetI= |0 1 O
0 0 1

11



1| = 1(1-0) — 0(0 — 0) + 0(0-0) = 1

- Let A be a square matrix of order n. If B is obtained from A by interchanging any two
rows (or columns) of A, then |[B| =- |A|.

Eg.

S © —

S N =

AN OO0 W
I

S © —

N O =

0 O\ W

- Let A be a square matrix of order n. If B is obtained from A by multiplying a row (or
column) by a nonzero scalar k, then [B| = k|A|

Eg.

- Let A be a square matrix of order n. If B is obtained from A by adding a scalar
multiple of a row (or column) of A to another row (or column) of A, then |B| = |A|.

Eg.
1 1 4 1+0k 1+2k 4+5k
0O 2 5 _ 0 2 5
0O 0 6 0 0 6

- If any row (or column) of a square matrix A is the sum of two or more elements, then
the determinant can be expressed as the sum of two or more determinants.

Eg.
1 2 4 1 2 1+3 1 2 1 1 2 3
2 3 5 T2 3 243 T2 3 20t 3 3
3 56 35 4+2 3 5 4 352

- Let A be a square matrix of order n. If B is also a square matrix of order n, then

|AB| = |A|[B].

12



1.9 Singular and Non-singular Matrices

If |A] #0, then A is said to be a nonsingular matrix; otherwise it is said to be singular.

Note:
If A exists, [AA| =[A||AT =1
ie., |AT=1/|A]

That is, If A is invertible, it is non-singular.

Example:

1 2
Let A= then [A|=4-6=-2#0.
3 4

Therefore, A exists and
14 -2
Al= —
-2\-3 1

1.10 Adjoint of a Square Matrix

Let A =(3j) be a square matrix of order n. The cofactor C; i of @; i is defined as

cj =(-D"my
where mij is the determinant of the matrix of order n-1 obtained by deleting the row and

column containing ajj -

Example:
1 0 2
Let A= 2.1 2 then then the cofactor C23 of 3.23 is derived as:
-1 0 -1

13



023 — (_1)2+3 m23 — (_1)2+3
-1 0

1 0‘ = (1)(0) - (0)(-1)=0

Similarly, we can find the cofactors of all the elements g; i of the matrix A and the

cofactor matrix C of A can be given as:

Cl 1 Cl 2 Cl 3
CZ 1 C22 C23
C3 1 C32 C3 3

Let A = (&) be a square matrix of order n and let C denote its matrix of cofactors. The

adjoint of A denoted by adj A, is C", the transpose of the matrix of cofactors.

Example:
1 0 -1 2 1 -1
Let A= 0 1 1 Then C= 0 3 0
I 0 2 I -1 1
2 0 1
ThereforeadjA=C'= | 1 3 -1
-1 0 1

1.11 Finding the Inverse of a Matrix

If A is a non-singular matrix, then

1
Al= — adjA
A
Example: 1 0 -1
Let A= 0 1 1
I 0 2

14



Then |A|=1(2-0)- 0+ (-1)(0—1) =3. Thus A is invertible

2 0 1
TR T S
3210

1.12 Systems of Linear Equations

A system of m linear equations in N unknowns is of the form

allxl + a12X2 + ooooooooooo alan — yl
a21X1 + a22X2 + ooooooooooo aZan — y2

where Y, Y,,....... Ymand @jj 1 <i<m, I<j<n are real numbers and

X5 Xy geennnnn X, are n unknowns.

Note: If Y, =Y, =....... =Y, = 0, the system is called a homogeneous system.

We write this system in matrix form as:

a, ap an | X Yi

ay; Ay ayy || X, Y,

Apnp Ay AR Ym
AX=Y

A is called the matrix of coefficients of the system.

Note: ifY is zero (zero matrix), the system is called a homogeneous system.

15



1.12.1 Characteristics of the systems of Linear Equation

1. A solution of the system of linear equations is a set of values
Xis Xy puennnn X,, which satisfy the above m equations.
2. If the equations are homogeneous then, X; = X, =....... =Xy = 0 is a solution
of the system.
3. If the system is not homogeneous, it is possible that no set of values will satisfy all
the equations in the system. If this is the case the system is said to be inconsistent.
4. If there exists a solution which satisfies all the equations of the system, the system
is said to be consistent.
5. A homogeneous system is always consistent since it has the trivial solution
Xp =X, =....... =Xy =
6. There are two possible types of solutions to a consistent system of linear
equations. Either the system will have a unique solution, or it will have infinitely
many solutions.
7. If a homogeneous system has a unique solution then, since the trivial solution is
always a solution, the trivial solution will be its unique solution.
Examples:
(1)
2x+ty=5
x—y=4.
This system has a unique solution, x =3,y =-1.
2)

2x+3y+4z =5
x+6y+7z =3

This system has infinitely many solutions of the form

x =k,
y=(10k-23)/3
z=(7-3k) where k is any scalar.

16



3)

Xx+2y—-3z=-1
3x— y+2z=17
S5x+3y—4z= 2

This system has no solution.

1.12.2 Elimination Method

The most fundamental method of finding solutions of systems of linear equations is
the method of elimination.

Consider the following system.

L

e We first eliminate y by multiplying the second equation by 3 and adding it to the
first equation.

5x +0y =15 S 0 x) (15
x-y=4 1 —-1\y) |4

e Now multiplying the first row by 1/5 we obtain

oy o3 G —01)@:@

¢ By multiplying the first row by —1 and adding it to row 2 we obtain

Ix+0y=3 I 0yx — 3
0x + (-l)y =1 0 -1y 1

¢ Finally by multiplying the second row by -1, we obtain

Ix+0y=3 10X — 3
Ox+1ly=-1 0 1 y —1

17



Note that the process of solving the system of this two linear equation stops when the
coefficient matrix becomes identity matrix.

From this we can directly obtain the solution,

x=3
y=-1

We have used two operations here, namely

1. addition of a scalar multiple of a row to another row
2. multiplication of a row by a scalar.

We use a similar method to find the solution of any system of linear equations. We apply
3 types of operations on the equations of the system to reduce them to another system of
linear equation from which it will be possible to determine whether a system is consistent
or not and if consistent to determine its solution. The operations we use are called
elementary row operations and these are performed on the matrix of coefficients. The
three operations are as follows:

1. Any two rows of a matrix may be interchanged.

2. A row may be multiplied by a nonzero constant

3. A multiple of one row may be added to another row

Example:

Consider the following system of three linear equations.

x+2y-3z=-1
3x—y+2z=7
S5x+3y—-4z=2

This system in matrix form

12 =3Yx) (-1
3 -1 2 |yl=|7
5 3 —4)\z) |2

Step 1: Multiplying the first row by —3 and adding it to the second row we obtain

12 =3Y)x) (-1
0 -7 11|y|=]10

5 3 —40Nz) (2 18



Step 2: Multiplying the first row by —5 and adding it to the third row we obtain

1 2 =-3\x —1
0 -7 11 |y|=|10
0 -7 11 )z 7

Step 3: Multiplying row 2 by —1 and adding to row 3 we obtain

12 =3Yx) (-1
0 -7 11|y]|=]10
0o 0 o0)\z) (-3

Thus the system reduces to

x+2y-3z=-1
Ty +11z=10
0=-3

This shows that the system is inconsistent since the third equation is false. Thus this
system has no solution.

Example:
Consider the following system of linear equations.
x+2y—-3z=6
2x - yt+d4z=2
4x+3y -2z=14

This set of equations in matrix form

1 2 =3Yx) (6
2 -1 4 |yl|=|2
4 3 -2)z) L4



Step 1: Multiplying row 2 by —2 and adding to row 3 we obtain

12 -3Yx) (6
2 -1 4 |y|=|2
0 5 -10)z) 10

Step 2: Multiplying row 1 by —2 and adding to row 2 we obtain

1 2 =-3)X 6
0 -5 10 |y|=|-10
0 5 -—-10)z 10
Step 3: Adding row 2 to row 3 we obtain
I 2 =-3\Xx 6
0 -5 10| y|=]-10
0 0 O0\z 0

Step 4: Multiplying row 2 by -1/5 we obtain

1 2 =3Yx) (6
01 -2|yl=|2
00 0)\z) \o

Step 5: Multiplying row 2 by —2 and adding to row 1 we obtain

10 1Yx) (2
01 -2[yl=|2
00 0z} \o

Thus the system reduces to

X+z=2
y—2z=2
0=0

20



This system is consistent and has infinitely many solutions given by

N <
[
SICNI
\

2
-k where k is a scalar.

Example:

Consider the following system of linear equations.
2x+ y+3z=5
3x-2y+2z=5
5x-3y—- z=16

This set of equations in matrix form

2 1 3Yx) (5
3 -2 2|yl=|5
5 -3 —-1)z) 16

Step 1: Adding row 1 to row 2 we obtain

2 1 3Yx) (5
5 -1 5 |yl=]10
5 -3 —1\z) 16

Step 2: Multiplying row 2 by —1 and adding to row 3 we obtain

2 1 3Yx) (5
5 -1 5 |yl=|10
0 -2 -6)\z) |6

Step 3: Multiplying row 2 by 1/5 and then multiplying row 3 by —1/2 we obtain

2 1 3Yx) (5
1 —1/5 1|y|=| 2
0o 1 3\z) (=3

21



Step 4: Multiplying row 3 by —1 and adding to row1 we obtain

2 0 0 x 8

1 —1/5 1|yl=| 2

0 1 3Nz -3
Step 5: Multiplying row 1 by %2 we obtain

1 0 0 x 4

1 —1/5 1|yl=| 2

0 1 3Nz -3

Step 6: Multiplying row 1 by —1 and adding to row 2 and then multiplying row 3 by 1/5
and adding to row 2 we obtain

1 0 0 Y\X 4
0 0 8/5||yl|=|-13/5
01 3 )z -3

22



Step 9: Finally interchanging row 2 and row 3 we obtain

1 0 0)\X 4
0O 1 Ofyl|=| 15/8
0 0 1)\z —13/8

Thus the system is reduced to

x=4
y=15/8
z=-13/8

This is the unique solution to the system.
Result:
Suppose a system of linear equations in matrix form is AX =Y. If the matrix A is

invertible, the system has a unique solution given by X = AY.

Consider the following system of linear equations.

Xx—2z=3
y+tz=3
X+2z=6.

In matrix form,

0 —-1Y)x 3
01 1|yl=|3
0 2 )\z 6
0 -1
The matrix A = 0 1 has |A| # 0
0 2

Thus A" must exist 2 0 1

Al -1 3 -1
-1 0 1



Thus the solution is

X 2 0 1 3

yi- L1 3 4
3 6

7 “1 0 1

Therefore we obtain the unique solution

X:
y
z

4
2
1

Calculating the Inverse by Elimination

This method involves augmenting the square matrix A with the Identity matrix. The
augmented matrix is designed by the symbol

All
Row operations are then employed to obtain an identity matrix on the left side of the

vertical line

Concurrent with the identity matrix on the left of the vertical line, the inverse matrix is
obtained on the right of the vertical line

This method transforms the augmented matrix, A | I, to inverse matrix 1| A™

Example:

5 3
Let A= |: 6 7 Then the augmented matrix can be written as

5 311 0

All =
6 —2/0 1

24



Step 1: Multiply row 1 by 1/5
1 3/51/5 0
6 —-2/0 1

Step 2: Multiply row 1 by -6 and add to row 2

1 3515 0
0 —285-6/5 1

1 35U5 O
0 1]6/28 =5/28

Step 4: Multiply row 2 by -3/5 and add to row 1

Step 3: Multiply row 2 by -5/28

1 02/28 3/28
0 16/28 =5/2

H_J ~ _J
I Al

Therefore,

o 2/28 3/28
|6/28 —=5/28
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