Sequences and Series

2.1  Sequences

2.1.1 Definition of a sequence

Examples:

1 11 1
1 L, —, =, —, S geeeee
M 23 4 n
(2) 1,-1,1,-1, oo
3) 3,5,7,9, 11, ............

1 1 1 1
4 L, —, —, — e, e
( ) 2 22 23 2n—l

(5)  0,1,0,2,0,3, oo

In each of the above we have an example of a sequence. In each of them we have an
endless list of numbers and these numbers are listed in order.
Let us call these numbers the terms of the sequence.

. .1 . .1
In example (1): The first term is 1, the second term is > the third term is 3 and so on.

For any given positive integer n, the n™term is — . This is called the
n

1
general n™ term and we denote the sequence by <—> .
n

. . 1
By just putting the values 1, 2, 3 etc for n in —, we get that the first term
n

. .1 . |
is 1, the second term is > the third term is 3 etc.

In example (2): The first term is 1, the second term is -1, the third term is 1, the fourth
term is -1 and so on. i.e., we know for any positive integer n what the ntt
term would be. If # is odd it will be 1 and if # is even it will be -1.

We can express the n™ term as (-1)" "' since (-1)" ™' =1 when n is odd and

(-1)" "' = -1 when n is even. So the sequence is <(—1)n+1 >



In example (3): The general n"termis 2n+ 1. Whenn= 1, 2n + 1 =3 and when n
increases by 1, 2n + 1 increases by 2. So we get that, whenn=2,2n+ 1 =15,

when n =3, 2n + 1 =7 etc. So, the sequence is <2n + 1>.

In example (4): The sequence is < | l>.
2)1—

In example (5): Although we have not given the general n™ term, we know that given any
value for n, we can get the value of the n'" term. We proceed along 0, 1, 0, 2,
0, 3, and so on until we come to the n'" term.

Let us get the 16" term in this way:
We have, 0, 1,0, 2,0,3,0,4,0,5,0,6,0,7,0, 8.
The 16" term is 8.

We see that when 7 is even, then n'™ term is E and when 7 is odd, the nh

term is 0.

When speaking about a sequence in general, we denote it by <an> (or <xn> , <bn> etc.) and

a, denotes the general n™ term.

: n .
We can express the sequence in example 5 by <an > where a, = 5 when 7 is even and @, = 0

when 7 is odd.

1

Example (6): For any positive integer n, a,,, = o
+a,

The above equation gives a sequence <an> once the value of @) is given.

(1) Let us take it that ¢; = 0. Then
1 1 11 1 1

a, = =——=1 a; = ==, a,= = =— eftc.
 l+a, 140 Yolta, 27 lva, 1
2
.. . 1 1 1 2
(i)  Letus take it that @; = 1. Then a, = =—, a; = = — etc.
l+a, 2 l+a, 3



(iii)

J5-1

Let us take it that ¢, = a where a = —
Noleroz—lJr\/__1 \/§+1and
1 2 2(\/_ D_5-1 . 1
. lLe, — = a.

l+a \/§+1 5-1 2 l+a

1 1 1 1
So, g =——=——=0qa, a;= =——=qa eftc,

l+a, l1+a l+a, l+a

That is, for any positive integer n, a, = c.
We say here that <an> 1s a constant sequence since all the terms take the

same value.

Example (7): x,,, =x,+x,, forall n>2.

The above equation gives a sequence <xn> once the values of x; and x, are

1ven.

2.1.2 Convergent and Divergent Sequences

Examples:

(1

2)

Consider the sequence <l> ie., 1,% % ........ . We see that as n grows

n

indefinitely large, the value of 1 approaches the value 0. We say that the
n

n—x0 n

1 ) ) ) o1
sequence <—> converges to 0 as n tends to infinity and we write lim—=0.
n

Consider the sequence "
n+1

We see that, lim =1.

n=op +1

In examples (1) and (2) we have what we call convergent sequences.

€)

Consider the sequence <(—1)"> e, -1,1,-1,1,-1, 1, ....



There is no number / such that (-1)" approaches the value / as n becomes
indefinitely large. For this reason we say that <(—1)”> is a divergent sequence.

4) Consider the sequence <3n - 7> .l.e.,-4,-1,2,5,8,11, 14, .......
The is no number / such that 3n — 7 approaches the value / as n becomes
indefinitely large. So, <3n - 7> is a divergent sequence.

2.1.3. Limits of a sequence

Definition 1: Suppose <an> is a sequences and / is a real number. We say that, <an>

converges to / and write lima, =/ if given any real number ¢ such that

n—>0

&> 0, there is a positive integer n, such that, whenever n > ny, | a,—1 l<e.

(Note: This is the technical way of saying that a, approaches the value / as
n becomes indefinitely large).

In this case we also say that the sequence <an> is convergent.

When for a sequence <an> there is no number / such that lima, =/, i.e.,

n—>0

when <an> is not convergent, we say that it is divergent.

Let us apply the definition to the sequence < & 1>.
n+

Lete >0andn € N.

[T -
n+ n+l n+l1
. . . 1
<g if ntl1>—.1e,ifn>— -1.
n+l & &

We can find n, € N such that n, > l - 1.
&

n

So for all n, |

=1.

~1|l <& whenn> no. Therefore, lim
n+1 noe 41

Definition 2: Suppose <xn> 1S a sequence.



(@)

(if)

We say that <xn> diverges to infinity and write limx, =, if given

n—>0

any real number £, there is a positive integer n, such that when n > n,,
x, > k.

(Note: This is a technical way of saying that x, grows indefinitely large
as n becomes indefinitely large.)

We say that <xn> diverges to minus infinity and write limx, = —oo, if

n—>0

given any real number £, there is a positive integer n, such that when
n> ney, X, <k.

(Note: This is a technical way of saying that x, grows indefinitely

small as n becomes indefinitely large. (note: —%is smaller than —%,

-100 is smaller than -2, etc.))

Let us apply definition 2(i) to the sequence <n2> .

Let ke R andn € N.

n® > n. Therefore, n* > k when n > k.
We can find n, such that n, > £.
So, for all n, n* >k when n > n,.

Therefore, limn* = o.

n—x0

2.1.4. Elementary Properties of Limits

Suppose <an>,<bn> are sequences and ¢ € R. Then, <can> denotes the sequence whose ™

term is ca,, <an + bn> denotes the sequence whose n™M term is a, + b, etc. Like this, given

two sequences, we can form other sequences by subtracting, multiplying, dividing. In this

spirit, <

th -
an|> denotes the sequence whose n™ term is | @, .

Theorem 1 (Algebra of Limits):

Suppose <xn >,<yn> are convergent sequences and limx, K =/, and limy, =/,. Suppose

ke R and an> is the constant sequence where for all n € N, a, = k. Suppose ¢ € R.

Then:

()  lima, =k . (ie., limk =k )

n—x0



(i1) lim(ex,)=cl, . (ie., lim(ex,) =climx,)

()  lim(x, +y,)=0L+1,. (ie., lim(x, +y,) =limx, +limy,)
(av) lim(x, -y,)=1-1,. (te., lim(x, —y,)=limx, —limy,)
(v) lim(x,.y,)=1.1,. (ie., lim(x,.y,) =(imx,)x(limy,))
X l X hm xn
(vi) lim—2%=-1 (i.e., lim(—*)="=>*—), provided that /, #0 and
n—>x0 yn lZ n—o0 yn llm "

y, #0 foralln € N.
We also have

ii) limlx,|=|4]. (. 1im|xn|:‘limxn‘)
n—>0 n—»o0 n—»0

Using definition 1, we can easily prove that liml =0.

n—o0 n

Now, by applying the theorem we get

1im(i2)=o, 1im(i3)=0, 1im(i2—i3)=o, etc.
n n—»00 n Nn—>0 n n

n—x0

3 q.2
Consider for example, lima, where a, =L3n+l.
o —4n” +5

1- 3 + %
Then, a, = L g and we see that by repeatedly applying the theorem we get,

-4+

n

lima, =—= —l.
n—w — 4

The limits in the theorem are finite limits. Definition 1 is about finite limits. In
definition 2 we have infinite limits. (i.e., lima, = o, limb, =)

n—>0 n—0

What about the properties of infinite limits?

For instance, we have that if limx, = and lim y, =0, then lim(x, +y, ) =0.
n—»o n—o

n—>x0

This can be coded as 00+ 00 =00,
We now give some properties of infinite limits in code.

Theorem 2:



(1) 00 400 =

(2) 00 X 00 = 0O

3) 00 X (—00) = —00

@) (o)x(-n) =0
(%) i=0 and L=O

e} — 00

(6) Suppose / € R and [ is a constant. Then, L 0 and co+/ =00 and
o0

—00+/[=—00,

(7) Suppose / € R and / is a constant. Then:
(1) If/>0, [xo=00 and [ x(—©) = —w©
(i) If/<0, Ixoo=—-0w and [ x(—o0) =00

a

=) =0.
bn)

n—>0 n—0 n—w

Part of (6) (i.e., L 0) decoded is: If lima, =/ and limb, = oo, then lim(
(e8]

Example: Consider lim(-n’ +n°).
—n’+n’ =n’(-n” +1) and limn’ = and lim(-n° +1) = —o.

Therefore lim(—n’ +n’) = —o0.

n—>0

. . . 1
We can get this answer in the following way also: —n’ +n* =n’(——1) and
n

n—x0 n—>ow

limn® =0 and lim(i2 —1)=—-1. Therefore, lim(-n’ +n’)=—o0.
n—>0 n

Theorem 3 (Squeeze Rule):
Suppose <an>,<bn>,<cn> are sequences and ny € N. Suppose for all n such that

n>n,, a,<c,<b,. Nowif lima, =limb, =/ forsome / € R, then limc, =/.

n—>0 n—>x0 n—0

.11 o : .
Example: 0 <sin— < — for all positive integers 7 (i.e., we can take the ng in the theorem
n

n
as 1).
lim0 = lirnl = 0. Therefore, lim(sin l) =0.
n—>0 n—>0 n n—»0 n
Theorem 4:

Suppose <an> is a sequence and n, € N and lima, =/ for some / € R. Suppose k € R.

Then:
(1) If a, <k for all n such that n > n,, then, / < k.



(i)  If a, > k for all n such that n > n,, then, / > k.

Example: Consider the sequence <an> where forall n, a, =1+ (% + o + .t l') (i.e.,

a=1+1, a, :1+1+%, a, :1+1+%+é etc.)

It is known that <an> is convergent and lima, =e.

n—>0

Now for all n such thatn >2, a, >1 +1+% =2.5.

Therefore, e > 2.5
Exercise: Show that e > 2.65.
We give here some standard limits:

(1) Suppose 7 is a real number and 7 is a constant.
()  Iflrl<1e.,-1<r<1),then limr" =0

n—»0

(i)  Ifr>1,then limr" =
1
(2) Suppose a is a real number and a > 0 and a is a constant. Then lima” =1
1

(3)  limn" =1

n—x0

We end this section by giving a result that could be useful.

Result: Suppose <an> is a sequence. Then, lima, =0 if and only if limla,|=0.
D" 1 .
Example: Let a, = for all n € N. Then, an| =— and hence limja,|=0.
n n n—>00

Therefore, lima, =0. i.e., lim =D =0.

n—0 n—om n

2.1.5. Monotonic Sequences

n

Consider the sequence <a > whichis 1, 1, %,%, %, l, N

We see that a, 2a, 2a; 2a, >......

e, foralln, a, > a,,,. The terms of this sequence are non-increasing.



Now consider the sequence <bn> which is 1,

-lkl»—'

L
273
We see that by > b, > b3 > ......

e, foralln, b, > b, ,,. The terms of this sequence are decreasing.

Definition 1: Suppose <an> is a sequence. Then:

(1) (a)Ifforalln, a, 2a,,, ,(e., a 2a, 2a, >2a, >.....) we say that <an> is
monotonic decreasing (m.d).
(b) If for all n, a, > ays) (e, a1 >ar>az > ... ), we say that (a, ) is strictly
monotonic decreasing.

(2) (ayIfforallm, a,,, >a, (ie., a, <a, <a, <a, <....)we say that <an> is

monotonic increasing (m.i).

(b) If for all n, aye1 > ap (e, ay<ar<az<...... ), we say that (a, ) is strictly
monotonic increasing.

Note: For real numbers x, y, x > y means that x >y or x = y. So, we see that if <an> is

strictly m.i it is also m.i and if <an> is strictly m.d it is also m.d.

We say that a sequence <an> is monotonic if it is mi or md (ie.,

a,<a,<a;<a,<... ora, 2a,2a,2a,2....)
Examples:
1 11 .
(1) Consider the constant sequence PR , 1.e., the sequence <an> where a,
. 1 :
is equal tOE for all n. Then, < > s both m.i and m.d.
(2) Consider the sequence <(—1)">, e, -1, 1, -1, 1, ...... This sequence is neither

m.i. nor m.d.

for all » € N. This

(3) Consider the sequence given recursively by a,,, = 1
+a,

sequence is given, once the value of @, is given. Then, by the recurrence equation,
we get all the terms. Let a; have a value such that a; > 0. Then we see that for all




2
a a
n,a,,>0.Also,an—anﬂ=an—1 1 :1 " >0.So, a, > a, + for all n and
+a +a
n n

hence <an> is m.d.

Question: What happens when a; = 0?

Definition 2: Suppose <an> is a sequence and ny € N and n is a constant. Then:

(1) (a) If for all n such that n2ny, a,2a,, (e, a, 2a, 2a, 2 ), we

n0+2 [

say that <an> is eventually monotonic decreasing.

(b) If for all n such that n 2 n,, a, >a,,, (e, a, >a,., >a
0

ny+1 ny+2

say that <an> is eventually strictly monotonic decreasing.

(2)  (a)Ifforall msuchthat n>ny, a, <a,, (e, a, <a,, <a,, ,<... ), we

say that <an> is eventually monotonic increasing.

(b) If for all n such that n > n,, a, <a,, (e, a, <a,, <a

n+l

say that <an> is eventually strictly monotonic increasing.

Note: The ‘note’ given in definition 1 applies here too.

9 seseesens

) 1 . 1 11
Example: Consider the sequence ,ie,-1,1, —, —, —
2n—1 579

Let a, = . We see that for all n such that n >2 (i.e., we can take ny =2

2n—-1

here), a, >a,,,. So, <

5 1> is eventually strictly monotonic decreasing. It
n J—

is also, eventually monotonic decreasing.

2.1.6. Bounded Sequences

n

Definition: Suppose <a > is a sequence. Then:
(1) If for all n, a, < k where k is a real number constant, we say that <an> is

bounded above.
(2) If for all n, a, > k where k is a real number constant, we say that <an> is

bounded below.

10



3 If <an> is both bounded above and bounded below, we say that <an> is

bounded.

We see that <an> i1s bounded means for all n, k1 < a, < k, where ki, k, are real number

constants.
We also have that, <an> is bounded if and only if | a, | < k, where k is a real number

constant.
Examples:
(1) Consider the sequence <(—1)”>, ie,-1,1,-1, 1, .... For all n, -1 < (-1)" < 1.

Hence, <(—1)"> is bounded. Also, for all n, |(—1)"|< 1.

(2) Consider the sequence <n>, ie., 1,2,3,4, .... For all n, n > 0 (actually n > 1)

Therefore, <n> is bounded below.

However, <n> is not bounded above.

Hence <n> is not bounded.

(3) Consider the sequence <— n>, re., -1,-2,-3, ...... For all n, -n < 0. Hence, <— n>

1s bounded above. However <— n> i1s not bounded below and hence it is not

bounded.

(4) Let us reconsider example (3) of 2.1.5, i.e., the sequence <an> given by the

. a .
recurrence equation a,,, = 1 “— and the value of a,. Consider when a; > 0.
+a,
a
Then, forall n, a,>0and 1> — >0.
l+a,
Let K =max {aj, 1} (i.e., K is the greatest value in the set {a;, 1}).

Then 0 < a,, < K for all n.
Therefore, <an> is bounded.

2.1.7. Relationship between monotonicity and boundedness

Theorem: Suppose <an> is monotonic (or eventually monotonic).

() If <an> is m.i (or eventually monotonic) and bounded above, then, <an> is

convergent.

11



2) If <an> is m.i (or eventually monotonic) and not bounded above, then,

lima, = 0.

n—>0

3) If <an> is m.d (or eventually monotonic) and bounded below, then, <an> is

convergent.
4) If <an> is m.d (or eventually monotonic) and not bounded below, then,

lima, =—o.

n—»0

Note:
(1) In (1), if for all n such that n > n,, a, < k where n, € N and k € R, then
lima, <k (see theorem (4) in 2.1.4.)

(i1) In (3), if for all n such that n > n,, a, > k where n, € N and k € R, then
lima, > k (see theorem (4) in 2.1.4.)

n—>0

Examples:
(1) Consider the  sequence <an> where for all n, a,6 = 2n1‘
n+

L _2nth-2_ 2

n

n+1 n+l’
As n increases, decreases and hence a, increases. Therefore, <an> 1S m.1.
n+1
2 .
Also, foralln, a, =2 - " < 2. Therefore, <an> is bounded above.
n+

Therefore, <an> 1s convergent.

In fact from the algebra of limits we have, lim(2 — Ll) =2-0=2.
n—>0 n +
(2) Consider the sequence <an> where for all n, a, = n>. We have that, <an> 1s m.1

and not bounded above. lima, = limn* =0

n—>0 n—»0

(3) Consider the sequence <an> where foralln, a, = l
n

<an> is m.d and bounded below (for all n, a, >20).

Therefore <a > is convergent.

n

In fact, lima, = liml =0.

n—>0 n—>0 n

(4) Consider the sequence <an> where for all n, a, = -n.

Then, <an> is m.d but not bounded below.

12



lima, =lim(-n)=—oo.

n—>0 n—>0

(5) Let us consider the sequence in example 3 of 2.1.5 and let us take a; > 0.

n

We saw that then, <a > 1s m.d.
In example 4 of 2.1.6, we saw that <an> is bounded above.
Therefore <an> is convergent.

So, lima, =1 for some /€ R. Let us find the value of /.

n—»0

a
a,,, =—=+ foralln.
I+a,

As n— o, n+1— o0 and hence lima,,, =1.

n—»0
/

Therefore, / = lim @, =—,
oo l4aq  1+1

e, l+1%=1
ie, [2=0.
Therefore, [ = 0.

*Note: For exercises/Further examples see Ref. 5: pages 387 to 393.

13



2.2

2.2.1

. 1
Example: Consider the sequence <an> where a, = =

Infinite Series

Definition: Suppose <an> is a sequence. We form the sequence <Sn> where for
neN, S, =a+a,+...+a, :zai .
i=1

We say that <Sn> is the sequence of partial sums and S, is the sum of the first »
terms of the sequence <an> .

Si=a;, SH=aita, S3=ata;+a;setc.

We call the sequence <Sn> a series and it is denoted by Z a,.

n=1

S1, S, S5 etc are called the terms of the series.

o0 0 1
Consider the series Zan ,1.e., z

n=1 n=1
This is a geometric series and we know that,
1
=)
' 1 Y 1
S, =) —=1+—+..+ = =2- .
n ; 21—1 2 2n—1 1 3 l 2;1—1
2

2.2.2 Definition: Consider a series Zan , 1.e., the series <Sn> where

n=1

S, =a,+a,+..+a,. If <Sn> is convergent we say that the series Zan

n=1

o0
converges (or Zan is convergent).

n=1

In this case, limS, =/, for some /e R.

n—

If <Sn> is divergent (i.e., it is not convergent), we say that the series Zan

n=1

diverges. (or Zan is divergent).

n=1

In the case Zan is convergent and lim S, =/, we write Zan =1.

n=1 n—»o n=1

Examples:

14



(1) Reconsider the geometric series Z% (see 2.2.1)

n=1

=1 1 1 1

We saw that, S, —=1+—+....+ =2- )
Z 21—1 2 2n—1 2;1—1

Now lim S, =2 (since hmzL— hm(—) =0).

n—o0

0

1 . .
Therefore, Z? is convergent and it converges to 2.

n=1

1
n(n+1)’

(2) Consider the series Zan where for any n, a, =

n=1

! =l ! LetS—Z ! forany ne N.

nn+l) n n+l =r(r+1)
Then, S, =) (———)=) ——
" ;(r ;r zr+1
I 1 1 1 1 1
=(l+=+=+. ) (=F+=+.t+—
( 2 3 n) (2 3 +1)
n+1
(Note: We can also get this result in the following way:
I IR B IR L
=r Tr+1 S o n+1

Therefore, limS, =1 (since, lim =0)

n—>0 n—>0 n +

0

Therefore, z

is convergent and it converges to 1.
mnn+1

(3) Consider the series Z( D™, ie. Za where for any n, a, = (-1)"".

n=1 n=1

Let S, =a,+a, +....+a,, for any n.

Then, S,=1-1+1-...., to nterms,
So, S, = 1—1+1—1+....+1—1=0whenniseven,and
S,=1-1+1-1+....+1-1+1= 1 when nis odd.

Therefore, <Sn> is divergent.

Therefore, Zan is divergent, i.e., Z:(—l)”+l is divergent.

n=1 n=l

(4) Consider the series Z a, where for any n, a, = n’.

n=1



The sequence of partial sums (S, ) is given by S, =17 +2% +...+n’.
Foranyn, S, =17 +2* +..+n°> >n’.
i.e., forany n, S, >n” and limn® =0,

Therefore, limS, =co.

n—>0

Therefore, <Sn> is divergent.

Therefore, Y n” is divergent.

n=1

(5) Consider the series  —n” .
n=1

The sequence of partial sums <Sn> is given by, S, =- 12 -2%- ... - n*.

Therefore for any n, S, <-n* and lim—n* = -0,
n—>0

Therefore lim §, = —o.

n—>0

Therefore <Sn> is divergent.

Therefore ) —n’ is divergent.

n=1

Note: A series Z a, could be divergent in any one of the following three ways:

n=1
Let <S n> be the sequence of partial sums.
(1) limS, =0

(i) im S, = -

n—>0

(iii) Neither lim S, = o0 nor lim S, = —o nor limS, =/ for some / € R.

n—>0 n—>0 n—>0

(In this case we say that the sequence <Sn> is oscillatory)

Possibility (i) is found in Example (4).
Possibility (ii) is found in Example (5).
Possibility (iii) is found in Example (3).

2.2.3 Fundamental Facts about Infinite Series

Theorem 1: Consider the series Zan and an. Let ¢,4,,4, € R be constants.

n=1 n=1

Suppose Zan and an are convergent.

n=1 n=1

Then:

16



(1) ican is convergent and ican = cian .

n=1 n=1 n=1

(Note: Forn e N,let T, = anr and S, = Zar Then, foranyn e N, T, = ¢S, and

r=1 r=1

if lim S, =1, then, lim7, = c/).

0
n— n—0

(2) i(an +b,) is convergent and Zw:(a,l +b,)= i a, +ibn .
n=1

n=1 n=1 n=1

(Note: Forn e N, let S, =Zar and 7, =Zbr and U, = Z(a,, +b,) . Then, for

r=1 r=1 r=1

anyneN,U,=8,+T,,andif limS, =/, and limT, =/,, then, limU, =1, +1,).

n—x0 n—w n—0

(3) D (Aa, +A,b,) is convergentand Y (Xa, +A,b,)=4 D a,+4,).b,
n=l1 n=1 n=l n=l

(Note: This follows from (1) and (2). Also, when 4, =1 and 4, =—1, we get,

d(a,-b)=Da, - Db,).
n=1 n=1

n=1

Theorem 2: Suppose <an> is a sequence of non-negative terms and <Sn> is a sequence of

partial sums.

Then, Zan is convergent if and only if <Sn> is bounded above (i.e., for all n, S, < k for

n=1

some constant k € R).

(Note: See the Theorem in 2.1.7)

Examples:
(1) Suppose <tn> is a sequence such that for all n, ¢, €{0,1,2,3,4,...9} and <an> is the
t

n

10}1 :

sequence where for any n, a, =

0
Now consider the series Z a, .

n=1

(Note: This is actually the infinite decimal, 0.¢,7,¢;.....)

Let <S n> be the sequence of partial sums.

Then for any n, S,1=t—1+t—22+...+ by S2+iz+ ..... =
10 10 10" 10 10 10"
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1
1——
L O S 2 UL SR S S STV L S
10 10 10" 10 10 10" 10 l—i 10"

10
Therefore, for all n, S, < 1; i.e., <Sn> is bounded above.

Also, <an> is a sequence of non-negative terms and hence <Sn> 1S m.1.

- . . t
Therefore, Zan 1s convergent, 1.e., Zl(;"
n=1

1s convergent.

n=1

: I 1 . :
(2) Consider the series Zan where a, =—. Then <an> is a sequence of non-negative
n

n=1
terms. Let <Sn> be the sequence of partial sums.

Let ne N.
1

+.
2" +1 2" 1

1 I 1 1 1 1
V(= —F—F+ D)+t (—+
3) (4 5 6 7) (2”

Then S, =1+ (% + )

1
2n+1

)

1 1 1
=l+=+=+... 4=
2 2 2
—_
to n terms
2
n . n
Therefore, S 21+— and lim(l1+—=) =
- 2 n—>ow 2

Therefore, for any k € R, § > k for some n.

2n+1_1
Therefore, <S n> is not bounded above.
Also, <Sn> 1s m.1.

Therefore, <Sn> 1s divergent.

1.
Therefore Z— is divergent.

n=1

Theorem 3 (Divergence Test):

If, not lima, =0, then Zan is divergent.
n—>o el

Note:

(1) By logic, we have that this is the same as saying ‘If Z a, 1s convergent, then

n=1

18



lima, =0°. (However, we cannot say that, if lima, =0 then Zan is

n—»w n—»o
n=1

. .1 ol B
convergent. For instance, lim— = 0, but E — is divergent.
n—0 n =l n

(2) Consider the situation when, not lima, =0.

This can be so in any one of the following four ways.
(i) lima, =/ for some / such that / #0.

n—>o

(i1) lima, =
n—0

(1i1) lima, = -

n—o0

(iv) Neither <a > is convergent, nor lima, =, nor lima, = —0.

n
n—w n—»0

Examples:

n=1

When r> 1:
limr"" =0 (As n—>o,n—1—wand limr" = (see 2.1.4), we have as

n—ow, r'! —owm)

Therefore, when a > 0, limar"" =

Nn—»o0
and when a <0, limar"" =—oo0.

n—x0

Therefore, not, limar"" =0.

n—

Therefore, when r > 1, z ar"™ is divergent.

n=l1

When r = 1:
ar"" =a # 0. Therefore, limar"" =a#0.

n—0

Therefore, not, limar"" =0.

n—>0

Therefore, when =1, > ar"" is divergent.

n=1

When r = -1:
- - when n is odd
ar’ =ax(-1)" = .
—-a when nis even
Therefore, neither <ar”'1> is convergent, nor limar"" =0, nor limar"" = —o0.
n—»0 n—>0

Therefore, not, limar"" =0.

n—0

19



Therefore, when r = -1, Zar”’1 is divergent.

n=1

When r <-1:

n—1 n—-1| _
‘ar ‘ = |a”r ‘ —|a|

n—

A" > |a| (as |r|>1) and |a| > 0.

=0 (see2.1.4, Theorem 4)

Therefore, not lim‘ar”_1

n—>0

Therefore, not limar"™" =0 ( see the last result in 2.1.4).

n—>0

Therefore, when r < -1, Zar”’l is divergent.

n=1

This brings us to the final possibility.

When -1 <r<1:
lim7" =0 (see 2.1.4)

n—x0

Therefore, limar"" =0.

n—0

0
However, this does not ensure that Z:ar”‘l 1s convergent.

n=1

Let <Sn> be the sequence of partial sums.

a(l-r" a a )
S, = ( )= - xr'" o —0 as n —oo, since ' = 0 as n — oo.
1-r l1-r 1-r 1-r

) a
Therefore Iim S =

now 1—1"

o0 o0 a
Therefore, when-1<r <1, Z:ar”‘1 is convergent and Zar""l = . )
—r

n=1 n=1

b

. where A € R and is a constant. We saw that when

(2) Consider the series Z
n=1 N
<1 B . < B
A=1, 27 is divergent. (i.e., Z— is divergent).
n=l1 n=1

Let us consider the situation for the other values of 4.

When A <0:
A = -k where k= -A> 0.

1 . . . o
— = n* an limn* =c. (limn* =0 when k> 0 is a standard limit).
n n—>0 n—>0

Therefore, limL = oo and hence by the theorem, ZL is divergent.

A A
n—w p n=1 N

20



o0

Therefore, ZLA is divergent when A <0.

n=1 n
When A =0:
Lﬁ =1 and hence limL/1 =1.
n n—>»0 n

Therefore, not limil1 =0.
n—>0 n

Therefore, ZLA is divergent when A = 0.
n=1 n

When 0 <A <1:
We will postpone the consideration of this case. We will consider it after the next
theorem (i.e., Theorem 4).

When A > 1:

.1 . > 1. .
Although lim—- =0, this does not ensure that E — 1s convergent. However, it
n—»0 n n=1

is in fact convergent and we shall now show this:
Let <S n> be the sequence of partial sums.

Let ne N.
1 1 1 1 1 1 1 1 1
S =l+(+)+(—+—F+—+—)+...+ + +...+
21 (2l 31) (4l 5/1 61 7% ((271)1 (2n+1)l (2n+1_1)l)
1 1 1
<1+ (—x2D)+(—x4)+.....+ x 2"
(21 ) (41 ) ((2,,)& )
_ 1 1 1
=1+ _2“ +—(2H)2 +....+—(2H)n
=1+r+r>+...+r" where r = Y= and0<r<1.(as 1—1>0)
_ l_rn+1
1-r
1 rn+l 1
= — <
1-r 1-r 1-r
Therefore, S2"+1-1 < " ! where 7 = =y
-r

Let meN. Then, there is neN such that 2" —1>m (since,

lim(2""' —1)=0).  Since the terms of the series are non-negative and
n—»0
1

1
ol _1>m, Sm SSz””—l S:
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Therefore forany me N, §, < "
-r

Therefore, <Sn> is m.i and bounded above.

Therefore, <Sn> is convergent.

0

1 .
Therefore, 27 is convergent when A > 1.

n=1

In the next two theorems we will consider only series of positive terms (i.e., series

Zan where forall ne N,a, >0).

n=1

Theorem 4 (Comparison Test):

Let Zan , an be series of positive terms and let n, € N, be a constant for which,
n=1 n=1

a, < b, for all n such that n > n,.

Then:

If an 1s convergent, then, Zan is also convergent.

n=1 n=1

(Note: By logic, this is the same as saying, ‘If Zan is divergent, then, an is
n=1

n=1

divergent’)

Example:

. . Sl . |
We said in Example 2 of Theorem 3 that we will be considering here the series ZT
-1 n

when 0 <A <1.

LetO<A<I.
1 1 .
Then for any ne N, —<— (since, n* <n when 0 <A <1)
n o n
But zl is divergent. Therefore, Z% is divergent; i.e., Z%is divergent when
n=1 n n=1 N n=1 1
O<A<l.

So, we have from this and what we had in Example 2 of Theorem 3, that,

Z% is convergent if and only if 4 >1
n=1 n

22



Theorem 5 (Limit Comparison Test):

a?’l

)=1 forsome [ e R.

n—w - h

Let Zan , an be series of positive terms and lim(
n=1

n=1

(Note: By Theorem 4 of 2.1.4, we have that / > 0 since for all n e N, Z—” >0).

n

Then:
If />0, Z a, is convergent if and only if an is convergent, and if / = 0, when an is

n=1 n=1 n=1

o0
convergent, z a, 1s also convergent.

n=1

*Remark: For any given series Z x, 1if we change the values of a finite number of terms

n=1

0 0
. . 1 . .
(for example consider the series Zan where a, =—. Now consider the series an

n=1 n n=1

> and for the other values of n,

where by = 0 and bs = 0 and by =2L and b,,, =

2100

b, = a,. Here Z b, has been obtained by changing the values of a finite number of terms

n=1

o0 o0 1
of Zan , 1.e., Z—), then, the convergence or divergence of the new series is the same
n=1 n=1

as that of the original series.

Let <Sn> be the sequence of partial sums of the original series and let <Tn> be the
sequence of partial sums of the new series. Then, 7, =S, +k for all n such that n > n,,

where k € R and n, € N are constants. On the other hand, if we delete a finite number of

0 0
terms (for example consider a series Z a, and we form a series an by deleting a;, a,

n=1 n=1

az and a,4), with the notation used above we have, 7, =S, ,+ k for all n such that n >

n

ni, where k € R and n,,n, € N are constants.

If both these changes are made, we get T, in the above form.

In all these, the convergence or divergence of the new series is the same as that of the

original series.

* So, although we insisted in Theorems 4 and 5, that for all n, a, > 0 and b, > 0, the
conclusions of these two theorems still remains true if, for all #» such that n > ng, a,>0
and b, > 0 where n, € N is a constant.

Do the exercises on Page 276 of Ref 1.
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Alternating series: A series whose terms are alternately positive and negative is said to be

an alternating series. An alternating series is of the form Z(—l)"”an where for all n,
n=1

a, > 0.

Theorem 6 (Alternating Series Theorem):

o0

Let Z(—l)"”an be an alternating series and <an> be m.d and lima, =0. Then,

n—>0

n=1

0
z (=1)""a, is convergent.
n=1

Example:
Consider the series 1— % + % - % + % —...., 1.e., the alternating series z (=1)""'a, where

n=1

a =l. Then, <an> is m.d and lima, =0. Therefore the series Z:(—l)"+1l is
n

n
n n—>0 n=1

convergent.

Absolute Convergence: A series Zan is said to be absolutely convergent if Z|an| is

n=1 n=1

convergent.

Theorem 7: Suppose Zan is absolutely convergent. Then, Z a, is convergent.

n=1 n=1

Definition: A series is said to be conditionally convergent if it is convergent but it is not
absolutely convergent.

Examples:
(1) Consider the alternating serires Z:(—l)”+1 l ‘(—1)”+1 l‘ _1 and so Z
n nl n

n=1

(_l)n-H l‘
n

n=1

is zl which is divergent. Therefore Z(—l)”+ll is conditionally convergent.
n=1 n n=l1 n
(See the above example)
L 1 .
(2) The series Y (-1)"" s absolutely convergent.
n=1

The Ratio Test and the Root Test:
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Theorem 8 (Ratio Test): Consider a series Zan where for all n, a, #0 (or at least for

n=1

all n>n, a, #0 where n, € N is a constant). Then:

(1) If im Dl _ 1 and I< 1, Zan is absolutely convergent.
n—>00| an =1

(2) If lim{“*1 =/ and [> 1, D a, is divergent.
n—>00 an =1

(3) If lim ™ =0, Y is divergent.
n—m an =1

Theorem 9 (Root Test): Consider a series z a, .

n=1

1 )
n=[and /<], Zan is absolutely convergent.

n=1

(1) If lim|a,

n—>0

(2) If lim|a,

1 )
n=1land[>1, ) a,is divergent.
n=1

1 0

n =00, Zan is divergent.

n=l1

an

(3) If lim

Examples:

< 1
(1) Consider Zan where a, = —- The convergence or divergence, as the case may
n=0 n.

be, is the same as that of Zan and we will consider this series (see * remark

n=1

appearing just after Theorem 5).

1
| |
Then, |21 = (Dt __ —0asn—>o.(ie., Tim| 21 = 0). Since
a, 1 (n+1)! n+l el g
n!

0

: 1. 1.
0 <1, by the Ratio Test, Z—' is convergent and hence, Z—‘ is convergent.
n=l1 n. n=0 ¢+
(Note: (i) It is absolutely convergent, but since the terms are positive, it is more
sensible to say that it is convergent.

=1 1 1 2
1i —=1+14+—+—+.... , while
();n! 2! 3! Z !
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o0

* Note: zl‘ is denoted by e and in logarithms, log, x is called the natural
n=0 n.

logarithm of x and it is written as In x.
In this context, we also mention another standard limit (see 2.1.4), namely

lim(1+2)" =e.

n—>0 n

We also considered this series in 2.1.4 as an example for Theorem 4 and
we showed there that e > 2.5.

n

0
. . n
(2) Consider the series E a, ,where a, = g
n=1 n.

(n+1)n+1
! 1" 1
Then, |22t = U Jr,ll) - +n) =(1+-)".
an n n n

n!

Now, we know that, lim(1 + l)" =e>25.
n

n—»0

an+1

al’l

Therefore, lim =e>1.

n—>0

0 n

Therefore, Z n' is divergent.

n=1

Note: This can be more easily proved using the Divergence Test (Theorem 3) as

n

n"=nxnx...xn=1x2x....xn=n! for all n and hence
%—/
n factors n.

>1 for all n.

2

(3) The sequence <an> is given by the recursion formula, a,,, = lxan for any
n+

ne N, and a; =-1.

Then,
2
| Qna : :
lim—— = lim =limn x ( )=00
ool g noop4]  now 14+
n

Therefore, Zan 1s divergent.

n=1

. o n. . n
(4) Consider the series Z—n, 1.e., the series Zan where a, = o

n=1 n=l
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1
1 P !
n :(2’1 j S Since, limn" =1 (see 2.1.4),

2 n—o

Then,

al’l

Lo
limla, |~ =5 <L

n—>0

o0

n .
Therefore, Z? is convergent.

n=1

Exercise: Use the Ratio Test to show that this series is convergent.

n

N 1
(5) Consider the series Z mr

i I
n" +1|_n" +1 S n"
2" -1 21" 2"

= (ﬁ) foralln € N.
2

1

1
n n' " n
> | = =—-—>00 as n —> o,

1

n

n" +1

Therefore,
2" -1

Therefore, lim n_+l

n—o| M _

Therefore, z "

n=1

+1. .
" is divergent.

Use some of the steps in the above proof and with the use of the Comparison Test
(Theorem 4), get the above result by using the Ratio Test.

o0 n n n
. ) e e e .
(6) Consider the series Z . Foralln € N, < (since n + 1 <2n).
o n+l 2n n+1
! 1 1
e"|” e . C AT
= —>eas n—>o (since lim2” =limn" =1)
2” l i n—>0 n—»0
2" xn"

nin

Therefore, lim

n—w|

n
n

=e>1 (we know that e > 2.5)

e
2n

Therefore, Z

n=1

is divergent.

Therefore, by the Comparison Test, Z ¢

n=1

is divergent.
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In connection with determining whether a series is convergent or whether it is
divergent, we may need a few more standard limits.

We give these standard limits without going into much detail:

(1) If limx, =c and lim f(x) =/, then, lim f(x ) =1.

Nn—»0 X—>C
. sinx 1
For example, lim =1 and lim—=0.
x—0 X n—o p
sin —
Therefore, lim ni-1.
n—0
n

(2) Supposelimx, =oo. Then:

Hn—>0

(i) If lim f(x) = o, then, lim f(x ) =o.
(i)  If lim f(x) = -0, then, lim f(x,) = —o.

(3) Suppose r,s € R and r, s >0 and r, s are constants.

Then, limnr"(Inn)™ = ((In n)” is defined for all # such that n > 2) and,

limn™ (Inn)* =0.

n—>0

Exercise: Show that Zan where a, = i " ) for all n such that n>2 (see *
n=1 nn

remark, just after Theorem 5), is divergent.

*Exercise: Consider an where b, = IL for all n > 2. Consider <an> where
o nn

a, = Ll . Show that lim 2~ = 0 and using Theorem 5 show that Z b, 1s

" ) p—r

[\S]

n

divergent. Deduce that Z; is divergent (See * note)
~In(n+1)

*Note: We take this occasion to belatedly state a result on sequences.

Result on Sequences: Suppose <an> is a sequence and k is an integer constant. Suppose
[ eR. Then:
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Note:

(1) lima, =/ if and only if lima,,, =/

n—x0 n—»0
(i1) lima, = if and only if lima,,, =0
n—o n—w

(iii) lima, = —o if and only if lima,,, =—c0.

n—>0 n—>0

When £> 0, <an+k> is the sequence <bn> where for any n, b, =a,,, . (i.e., by = a1,
b, = ay+, etc). For instance, when k= 5, by = ag, by = a7, b3 = as etc).
When £<0, <an+k> is a sequence <bn> where b, =a,,, when n>—k+1

(i.e.,m+k>1),and when 1 <n < —k, b could take whatever value we give them.

> " n

For example, <an75> is a sequence <bn> where for n>6, b, =a, ; (i.e.,b, =a,,

b7 = ay, bs = a3 etc) and by, by, b3, by and bs could take whatever value we give
them.

So, in the previous exercise, if <cn> is the sequence where ¢, =

and <Tn>

In(n+1)
is the sequence of partial sums of the sequence (i.e., 7 1=cj, Tr=c; + 3,
T5 =c; + ¢ + ¢3 etc) and <Sn> is the sequence of partial sums of the sequence

then, we have: 7, = — L+....+ ! and S, =b, +L+L+....+L
In2 1In3 In(n+1) In2 In3 Inn

and for any n such that n > 2, 7,, = S,+; — by, i.e., T,,=S,+1 + constant.

n

From this we get, <T > is convergent if and only if <S > is convergent. Since we

0

showed that <Sn> is divergent, we get that <T n> is divergent, i.e., Z
o ln(n + 1)

divergent.
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2.3 Power Series

2.3.1 Fundamental facts about Power Series

Definition:

o0
Consider a series » a,(x—c)" (ie, a,+a(x—c)+a,(x—c)’ +a;(x—c)’ +.....)
n=0

where <an> is a sequence with first term ap and x, ¢ € Rand c is a constant while x is a

variable. We say that, this is a power series about c. An important special case is when

0
¢ = 0 where we have the power series about 0 which is Zanx" :
n=0

From a given context it is understood the number ¢ about which it is a power series and
we refer to any one of these series as just a power series.

0
Example: Consider the series 1+x+x” +x’ +.... This is the power series Zanx”
n=0

where a, = 1 for all ne N U{0}. It is also a geometric series and it is convergent only

when |x| <land 1+ x+x>+x> +.... = when |x| <1, 1e.,-1<x<l.

- X

Theorem 1: Consider a power series Zan(x—c)”. Then, one and only one of the
n=0

following possibilities occur:

(1) It converges for all values of x in R.
(2) It converges only when x = c.
(3) There is a real number R, , such that the power series converges for all x € R such

that c— R, <x<c+R, (ie.,

x— c| < R,) and diverges when x > ¢+ R, and when

x<c—R, (i.e., when |x - c| >R,))
(Note: It may or may not converge when x = c+ R, . This is so also when x =c—R,.)

The set of all values for which a power series converges is called its interval of
convergence

Also: We say that the radius of convergence of the power series is
(i) oo in the case of (1).
(11) 0, in the case of (2).
(ii1) R; in the case of (3).
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Examples:

(1) Consider the power series zx_' By application of the Ratio Test we get that the
n=0 .

radius of convergence is w (i.e., it converges for all x € R)

(2) Consider the power series Z(n +1)"(x—1)" . By applying the Root Test, we get
n=0
that the radius of convergence is 0 and the series converges only when x = 1.

n 2 3

(3) Consider the power series Z;—n (ie., 1+ % + XT +% +..... ). By the Ratio Test
n=0

we get that the radius of convergence is 2. It does not converge when x = 2 and

when x = -2. Therefore, the interval of convergence is (-2, 2), i.e., the set of all
x € R such that -2 <x <2.

2 3 ©
. . x° X . 1
(4) Consider the power series 1+ x +?+?+ ..... , Le., E a,x" where a, =— for
n=0 n

all n>1and ag=1.

In order to find the radius of convergence and the interval of convergence, it is

n

. . e X .
sufficient to consider the series Z— Then, by the Ratio Test we get that the

n=1

radius of convergence is 1 and when x = 1 the series diverges (since Z— is
n=1
divergent) and when x = -1 the series converges by the Alternating Series
Theorem (Theorem 6). (Note: Although in an alternating series the first term is
positive, here the first term is negative. But this does not matter since, if we have

a series Z(—l)"an with Z(—l)””an being an alternating series, taking <Sn> as
n=l1 n=1

the sequence of partial sums of the series Z(—l)" a, and <T > as the sequence of

n
n=1

n+l
a

partial sums of the series Z(—l) then, 7, = - S, and so both converge or

n=1

n o

diverge together. )

Therefore, the interval of convergence is [-1, 1), i.e., the set of all x € R such that
—1<x<1.
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Theorem 2 (Differentiation of Power Series)

o0
Consider a power series Z a,(x—c)" (e, a, +a,(x—c)+a,(x—c)* +....) and suppose
n=0

that the radius of convergence is R; for some R; such that R; > 0. Let / denote the

interval of convergence. Let f be the function given by, f (x) = Zan(x—c)” , x € I
n=0
Then, for any x € R such that,c — R; <x<c+ Ry,

f'(x) = inan (x—¢)"" =a, +2a,(x—c)+3a,(x—c)” +....

n=1

f is differentiable at x when |x— c| <R, (ie,c—R <x<c+R)and f'(x) is equal to

(x—c)") and this series also has radius of

the series Y na,(x—c)"" (or Y. (n+1)a

n=l1 n=0

n+l

convergence R;.

If the radius of convergence of Zan (x—c)" is oo, a similar result holds but in this case f
n=0

is differentiable at x for all x € R, and the series Znan (x—c)"" which is equal to f'(x)

n=1

also has oo as its radius of convergence.

*Note:

(1) The differential coefficient of a, +a,(x —c)+a,(x —c)* +a;(x—c)’ +.... is
a, +2a,(x—c)+3a,(x—c)’ +.... which is the series got by differentiating the terms
of the given series.

*(2) We can repeatedly apply this theorem to get: For any k € N,

0

fk(X) = Zn(n — 1)(1’1 —k+ l)an (x _ C)n—k )

n=k

(e, ff(x)=kla, + 2x3x..x(k+1))a,, (x—c)+Bx4x..x(k+2)a,,,(x—c)* +....,
k k k
d d iy, A

e (0= (@ (=0 )+ (=) D4 (@ (=0 ) ¢ )

where x takes the values as it was for f'(x).

*(3) All this applies when the radius of convergence is c and here x takes all values in R,
for f'(x) and for f*(x) where k € N and all the series mentioned have radius of
convergence .

ING)

*Exercise/Result: Show that forany ke N, a, = r
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Theorem 3: Let f(x) = Zan(x—c)” , ¢c— R <x<c+ Ry where R; >0 and R, is the
n=0
radius of convergence of this power series.

Then:

n+l

(a) I f(x)dx = Z@ + C where C is the integration constant and the radius of
n+

n=0
convergence of this power series is also R).

= ao(x—c)+%(x—c)2 +a—32(x—c)3 +ot C
n+l

_ ian(x c) +0)

‘= n+l

(b) If I is the interval of convergence and a,b € [ and a < b and a, b are interior points of

I, then, Jb'f(x)dx - i{“l("—_cw} _ i{an -0 aa-0)

n+l

o n+1 pary n+l n+l
£ 1 © 1
— Zan(b_c)n+ _Zan(a_c)n+
ey n+1 e n+1

(Note:

[an(x—c)”“} J'a (x —¢)"dx and hence, I (za (x—c)")dx = Z(J‘a (x—c)"dx) ).

n+l1

n=0

*Note: When the radius of convergence is o, f(x) = Zan (x—¢)", xeR and (a), (b)

n=0
n+l
hold but in (a) the radius of convergence of Z% iscoandin (b),/ =R
=0 n+

and any a, b € R are always interior points of R.

Examples:

o= n! 12 3
(Note: The radius of convergence of this power series is )
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Let xeR.

2 3
f'(x)=1+2x1+3i+4i+ ......

20 3 4!
X2 3
=l+—+—+—+
o2t 3

* This function is called the exponential function and f'(x) is denoted by exp(x).
Also, it is denoted by ¢&*.

So we have ie* =e" forall xe R
dx

(2) %zZ(—l)"x” =1-x+x>—x"+... where —1<x<1.
+ n=0 -

(The interval of convergence of Z(—l)” x" 1is (-1, 1). i.e., the set of all x € R such
n=0

that —1<x<1)

Therefore,jl1 dx=x——+—-"—+...... + C where -1 <x <1

(Note: Actually this is true for —1<x <1)

w1 X . . .
= Z(—l) '~ 4+ C, where C is the integration constant.
n

n=1

Therefore, In(1 +x) = z -n"! Y 1K for some constant K.
n

n=1

1
1+x

(Since, I dx = In(1 + x) + constant )

Whenx =0, we get,In1 =K, i.e., K=0.

0 n 2 3
Therefore, In(1 + x) ZZ“(—I)”*1 X - x—%+§ —.... where -1 <x<1
n

n=1

(Note: Actually this is true for —1<x<1)

Theorem 4: Let f'(x) = Zan (x—¢)", c—R; <x<c+R;where R; >0 and is the
n=0
radius of convergence of this power series.
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Suppose, Zan (x—c)" 1s convergent when x =c+ R,

n=0

(i.e., Zaan” is convergent and ¢+ R, € [ where [/ is the interval of convergence and
n=0

¢+ R, is the right end point of this interval).

Let b=c+R,.
Then, li ~SNu R
Then, lim f(x) =3 a,R,

n=0
(lim f(x)means the limit of f{x) as x tends to b but x taking values such that x < b)
x—b~

*A similar result holds for lim f(x) where a =c—R,.

Example:
2 3 4

We saw that, In(1 + x) = x—%+%—7+... where -1 <x <.
By the theorem,
limln(1+x)=1—l+l—l+....
1 2 3 4
ie.,In2= 1—l+l—l+.....

2 3 4

2.3.2. Taylor and Maclaurin Series

Consider a power series Zan (x — ¢)" with radius of convergence R, for some R; > 0 (or
n=0

radius of convergence ).

Then, we have a function f'(x) ZZan(x —c)',c—R<x<c+R; (or xeR).
n=0

We showed that a, = f_('c) forall ne N. (See Ex/Result after Theorem 2, in 2.3.1)
n!

ie., f(x):iLEc)(x—c)" ,c—Ri<x<c+R; (or xeR).
n=0 n.

Definition: Now, let us consider functions, not given in terms of power series (example
fix)=sinx, xeR)
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We call the series zf—('c)(x —c)" the Taylor Series for fabout ¢ and we call the Taylor
n=0 n.

Series for fabout 0 the Maclaurin Series for f.
(Note: We must have that f'is infinitely differentiable at x = ¢)

We give without much details (Note: These details are required in order to apply the
theorem) the following theorem:

Theorem: Suppose f'is a function defined on an interval / (Note: / could be R) and c is an
interior point of /.

Then: f(x)= Zf—('c)(x—c)" for all x such that ¢ — r; <x < ¢ + r| for some r; > 0 (or
n=0 n.

for all x e R), i.e., f(x) is equal to its Taylor Series for all x such that c — r} <x <c¢ + r

for some ; > 0 (or for all x e R).

Whenc=0, f(x)= Zf—('c)x” (i.e., f{x) is equal to its Maclaurin Series) for all x such
n=0 n.
that — r; <x <, for some r; > 0 (or for all x € R).

Note: Though we have not given the details regarding the function f'that are necessary for
the theorem, we give the following facts.

(1) Obviously, f'(x) can be differentiated infinitely at x = ¢ (i.e., f"(c) exists for all
n € N)

(2) For any x,ye(c—rn,c+r), lim

S )

n!

(x—¢)"=0 (or for any x, y € R,

limw(x —-c)" =0).
n!

n—>0

This is a sufficient but not necessary requirement.

Examples:

() f(x)=sinx, xeR. Let xe R. Then f'(x) =cosx, f"(x)=-sinx, f"(x)=-cosx,
and f'"(x) = sinx. Therefore forany n € N, f* 7 (x)=cosx, f**(x)=—sinx,
¥ (x)=—cosx and f*(x)=sinx,ie., f"7(0)=1, f*20)=0, " (0)=-1

and f*(0)=0. Therefore, for any x,y € R, lim S0) x" =0 (since ‘f” (y)‘ <1 and

n—»0 n'
front| P
hence, |—=—{<~— and lim——=0).
n! n! n—o p
o |x|r’l X n
(Note: Z—' is convergent and hence lim——=0).

o n—o pl
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2) f(x)=(1+x)" where -1 <x<1.
Here,» € Rbutr ¢ Nand r # 0.
Let-1<x<1. Then, f'(x)=r(+x)"", f"(x)=r(r-1)(1+x)"7?, etc
e, f"(x)=r(r=1D...(r-=n+1)(1+x)"".
Then the Maclaurin Series zf © ) zr(r D-.. (r ntl) x".

=0

Therefore, the series converges when -1 <x < 1.

3 i r(r=1)..(r—n+ l)x,,
por n!
to solve differential equations, otherwise ignore it.

For the proof of (1+ x)" , see Ref 5: page 34 if you know how

This series is called a binomial series.

For further examples/problems, see Ref 5, pages 433 - 439, examples 2, 3, 7 and 8 and
problems 1 — 3 (for problem 3 see example 8 on page 423), 4, 5 and 9-17.

To solve some of the problems we state a useful result.

Result: Suppose « is an interior point of the interval of convergence of Zanx” and f
n=0

is an interior point of the interval of convergence of anx". Then,
n=0

(Zana”)x(anﬂ”) is equal to the convergent series 2cn where for any
n=0 n=0 n=0

ne N {0},
c, =ab, B +(a,a)x (b, B+ (a,a’)x (b, . 7)+...+a,a"b,

n

(i.e., (a, +aa+a,a’ +aa’ +.. )b, +b f++b,B” +b, B +..)

= a,b, + (ay x (b)) + (a,a) x by ) + (a, (b, B) + (a,)(b, B) + (@, by ) +.....)

When o = g, we get, ¢, =a"(a,b, +a,b, , +a,b, , +...+a,b,) and

n-1

(a, +a,a+a,a’ +a,a’ +..)x (b, +ba++b,a” +bya’ +...)

= a,b, + a(a,b, +ab,)+a’(a,b, +a,b, +a,b,)+a’(ayb; +ab, +a,b, +a,b,)+...

*Note: This result could sometimes be used to justify that a function f is equal to its
Maclaurin series (we need also the Ex/Result given just before Theorem 3)

END
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