
 
 
 

Sequences and Series 
 
2.1 Sequences
 
2.1.1  Definition of a sequence
 
Examples:  

(1) ,......1,........,
4
1,

3
1,

2
1,1

n
 

 
(2) 1, -1, 1, -1, …………… 

 
(3) 3, 5, 7, 9, 11, ………… 
 

(4) ,...
2

1,......,
2
1,

2
1,

2
1,1 132 −n  

 
(5) 0, 1, 0, 2, 0, 3, ……….  

 
In each of the above we have an example of a sequence. In each of them we have an 
endless list of numbers and these numbers are listed in order. 
Let us call these numbers the terms of the sequence. 
 

In example (1): The first term is 1, the second term is 
2
1 , the third term is 

3
1  and so on. 

  For any given positive integer n, the nth term is 
n
1 . This is called the  

general nth term and we denote the sequence by  
n
1 . 

By just putting the values 1, 2, 3 etc for n in 
n
1 , we get that the first term  

is 1, the second term is 
2
1 , the third term is 

3
1  etc. 

 
In example (2): The first term is 1, the second term is -1, the third term is 1, the fourth  

term is -1 and so on. i.e., we know for any positive integer n what the nth 
term would be. If n is odd it will be 1 and if n is even it will be -1. 

                       We can express the nth term as (-1)n +1 since (-1)n +1 = 1 when n is odd and  
                       (-1)n +1 = -1 when n is even. So the sequence is 1)1( +− n . 
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In example (3): The general nth term is 2n + 1. When n = 1, 2n + 1 = 3 and when n  

increases by 1, 2n + 1 increases by 2. So we get that, when n = 2, 2n + 1 = 5,  
when n = 3, 2n + 1 = 7 etc. So, the sequence is 12 +n . 

 

In example (4): The sequence is 12
1
−n . 

 
In example (5): Although we have not given the general nth term, we know that given any  
                       value for n, we can get the value of the nth term.  We proceed along 0, 1, 0, 2,  
                       0, 3, and so on until we come to the nth term. 
                        

Let us get the 16th term in this way:  
                        We have, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8. 
                        The 16th term is 8. 

  We see that when n is even, then nth term is 
2
n  and when n is odd, the nth  

term is 0. 
 
 
When speaking about a sequence in general, we denote it by na (or nx , nb  etc.) and 
an denotes the general nth term. 
 

We can express the sequence in example 5 by na where an = 
2
n  when n is even and an = 0 

when n is odd. 
 
 

Example (6):  For any positive integer n, 
n

n a
a

+
=+ 1

1
1 .  

        The above equation gives a sequence na  once the value of a1 is given. 
 
(i) Let us take it that a1 = 0. Then  

3
2

2
11

1
1

1,
2
1

1
1,1

01
1

1
1

3
4

2
3

1
2 =

+
=

+
==

+
==

+
=

+
=

a
a

a
a

a
a  etc. 

 
 

(ii) Let us take it that a1 = 1. Then 
3
2

1
1,

2
1

1
1

2
3

1
2 =

+
==

+
=

a
a

a
a  etc. 
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(iii) Let us take it that α=1a  where α  = 
2

15 − .  

  Now 1 + α  = 1 + 
2

15 −  = 
2

15 +  and  

15
)15(2

15
2

1
1

−
−

=
+

=
+α

= 
2

15 −  .  i.e., 
α+1

1  = α . 

So,  ,
1

1
1

1

1
2 α

α
=

+
=

+
=

a
a α

α
=

+
=

+
=

1
1

1
1

2
3 a

a etc, 

That is, for any positive integer n, an = α. 
We say here that na  is a constant sequence since all the terms take the  
same value. 
 

Example (7):   for all .  11 −+ += nnn xxx 2≥n
   
            The above equation gives a sequence nx  once the values of x1 and x2 are  
                    given. 
  

 
 
2.1.2  Convergent and Divergent Sequences 
 
Examples: 
 

(1) Consider the sequence 
n
1 . i.e., ,........

4
1,

3
1,

2
1,1 .  We see that as n grows 

indefinitely large, the value of 
n
1  approaches the value 0. We say that the 

sequence converges to 0 as n tends to infinity and we write  01lim =
∞→ nn

. 

 
 
 

n
1

(2) Consider the sequence 
1+n

n . i.e.,  .......,
6
5,

5
4,

4
3,

3
2,

2
1      

We see that, 1
1

lim =
+∞→ n
n

n
. 

 
      In examples (1) and (2) we have what we call convergent sequences. 
 

(3) Consider the sequence n)1(− . i.e., -1, 1, -1, 1, -1, 1, …. 
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There is no number l such that (-1)n approaches the value l as n becomes 
indefinitely large. For this reason we say that n)1(− is a divergent sequence. 
 

(4) Consider the sequence 73 −n . i.e., -4, -1, 2, 5, 8, 11, 14, ……. 
The is no number l such that 3n – 7 approaches the value l as n becomes 
indefinitely large. So, 73 −n  is a divergent sequence. 
 
 

2.1.3. Limits of a sequence 
 
Definition 1: Suppose na  is a sequences and l is a real number.  We say that, na  

converges to l and write lann
=

∞→
lim  if given any real number ε such that      

ε > 0, there is a positive integer n0 such that, whenever n > n0, ⎜an – l ⎜< ε . 
 

(Note: This is the technical way of saying that an approaches the value l as  
n becomes indefinitely large). 

 
            In this case we also say that the sequence na  is convergent. 
 
            When for a sequence na  there is no number l such that , i.e.,  lann

=
∞→

lim

when na  is not convergent, we say that it is divergent. 
 
 

Let us apply the definition to the sequence 
1+n

n . 

Let ε  > 0 and n ∈ N. 

⎜ 1
1
−

+n
n

⎜ = ⎜
1

1
+

−
n

⎜= 
1

1
+n

. 

 

1
1
+n

 < ε    if   n + 1 > 
ε
1 .  i.e., if n > 

ε
1  - 1.  

 

We can find no ∈ N such that no > 
ε
1  - 1. 

So for all n, ⎜ 1
1
−

+n
n

⎜ < ε   when n >  no.  Therefore, 1
1

lim =
+∞→ n
n

n
. 

 
Definition 2: Suppose nx  is a sequence. 
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(i) We say that nx  diverges to infinity and write ∞=
∞→ nn

xlim , if given 

any real number k, there is a positive integer no  such that when n >  no, 
xn > k.   

 
(Note: This is a technical way of saying that xn grows indefinitely large 
as n becomes indefinitely large.) 
 

(ii) We say that  nx  diverges to minus infinity and write −∞=
∞→ nn

xlim , if 

given any real number k, there is a positive integer no  such that when 
n >  no,  xn < k.   
 
(Note: This is a technical way of saying that xn grows indefinitely 

small as n becomes indefinitely large. (note: 
2
1

− is smaller than 
3
1

− ,  

-100 is smaller than -2, etc.)) 
 
 
Let us apply definition 2(i) to the sequence 2n . 

Let  and n ∈ N.  Rk ∈
.2 nn ≥  Therefore, n2 > k  when n > k. 

We can find no such that no > k. 
So, for all n, n2 > k  when n > no.  
Therefore, . ∞=

∞→

2lim n
n

 
 
2.1.4. Elementary Properties of Limits 
 
Suppose nn ba ,  are sequences and Rc∈ . Then, nca  denotes the sequence whose nth 

term is can, nn ba +  denotes the sequence whose nth term is an + bn etc. Like this, given 
two sequences, we can form other sequences by subtracting, multiplying, dividing. In this 
spirit, na  denotes the sequence whose nth term is ⎜an⎜. 
 
 
 
Theorem 1 (Algebra of Limits): 
 
Suppose nn yx ,  are convergent sequences and 1lim lxnn

=  and .  Suppose 

 and 

2lim lynn
=

Rk ∈ na  is the constant sequence where for all n ∈ N, an = k. Suppose c ∈ R. 
Then: 

(i) .   (i.e., kann
=

∞→
lim kk

n
=

∞→
lim ) 
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(ii) .   (i.e., 1)(lim clcxnn
=

∞→ nnnn
xccx

∞→∞→
= lim)(lim ) 

(iii) .  (i.e., 21)(lim llyx nnn
+=+

∞→ nnnnnnn
yxyx

∞→∞→∞→
+=+ limlim)(lim ) 

(iv) .  (i.e., 21)(lim llyx nnn
−=−

∞→ nnnnnnn
yxyx

∞→∞→∞→
−=− limlim)(lim ) 

(v) .   (i.e., 21.).(lim llyx nnn
=

∞→
)lim()lim().(lim nnnnnnn

yxyx
∞→∞→∞→

×= ) 

(vi) 
2

1lim
l
l

y
x

n

n

n
=

∞→
  (i.e., 

∞→

∞→

∞→
=

n
n

nn

n

n

n y

x

y
x

lim

lim
)(lim ), provided that  and 

 for all n ∈ N. 

02 ≠l

0≠ny
We also have  

(vii) 1lim lxnn
=

∞→
.  (i.e., nnnn

xx
∞→∞→

= limlim ) 

 
 

Using definition 1, we can easily prove that 01lim =
∞→ nn

. 

Now, by applying the theorem we get 

,0)1(lim 2 =
∞→ nn

,0)1(lim 3 =
∞→ nn

,0)11(lim 32 =−
∞→ nnn

 etc. 

 

Consider for example, where nn
a

∞→
lim

54
13

3

23

+−
+−

=
n

nnan . 

Then, an = 

3

3

54

131

n

nn

+−

+−
 and we see that by repeatedly applying the theorem we get,  

4
1

4
1lim −=
−

=
∞→ nn

a . 

 
 
The limits in the theorem are finite limits.  Definition 1 is about finite limits.  In 
definition 2 we have infinite limits. (i.e., ,lim ∞=

∞→ nn
a −∞=

∞→ nn
blim ) 

 
 
What about the properties of infinite limits? 
 
For instance, we have that if ∞=

∞→ nn
xlim  and ∞=

∞→ nn
ylim , then ∞=+

∞→
)(lim nnn

yx . 

This can be coded as . ∞=∞+∞
 
We now give some properties of infinite limits in code. 
 
Theorem 2:  
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(1)   ∞=∞+∞
(2)  ∞=∞×∞
(3)  −∞=−∞×∞ )(
(4)  ∞=−∞×−∞ )()(

(5) 01
=

∞
 and 01

=
∞−

 

(6) Suppose Rl∈  and l is a constant. Then, 
∞
l = 0 and ∞=+∞ l  and  

−∞=+∞− l . 
(7) Suppose Rl∈  and l is a constant. Then: 
 (i)  If l > 0,  and ∞=∞×l l  −∞=−∞× )(
 (ii) If l < 0,  and −∞=∞×l ∞=−∞× )(l  
 

Part of (6) (i.e., 
∞
l = 0) decoded is: If lann

=
∞→

lim  and ∞=
∞→ nn

blim , then 0)(lim =
∞→

n

n

n b
a

. 

 
 
Example: Consider . )(lim 35 nn

n
+−

∞→

       and  and . )1( 2335 +−=+− nnnn ∞=
∞→

3lim n
n

−∞=+−
∞→

)1(lim 2n
n

     Therefore . −∞=+−
∞→

)(lim 35 nn
n

 

We can get this answer in the following way also: )11( 2
535 −=+−

n
nnn  and  

∞=
∞→

5lim n
n

 and 1)11(lim 2 −=−
∞→ nn

.  Therefore, . −∞=+−
∞→

)(lim 35 nn
n

 
Theorem 3 (Squeeze Rule): 
Suppose nnn cba ,,

nnn bcann ≤≤≥ ,0

 are sequences and n0 ∈ N.  Suppose for all n such that 
.  Now if lba nnnn

==
∞→∞→

limlim  for some Rl∈ , then . lcnn
=

∞→
lim

 

Example: 
nn
11sin0 ≤≤  for all positive integers n (i.e., we can take the n0 in the theorem  

                 as 1). 

      01lim0lim ==
∞→∞→ nnn

.  Therefore, 0)1(sinlim =
∞→ nn

. 

 
Theorem 4:  
Suppose  is a sequence and no ∈ N and lann

=
∞→

lim  for some l ∈ R. Suppose k ∈ R. na

Then: 
(i) If  for all n such that n ≥ nkan ≤ o, then, l ≤ k. 
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(ii) If  for all n such that n ≥ nkan ≥ o, then, l ≥ k. 
 

 

Example: Consider the sequence na  where for all n, )
!

1....
!2

1
!1

1(1
n

an ++++=  (i.e.,      

                a1 = 1 + 1, 
6
1

2
111,

2
111 32 +++=++= aa  etc.) 

     It is known that na  is convergent and eann
=

∞→
lim .  

                Now for all n such that n ≥ 2, .5.2
2
111 =++≥na   

                Therefore, e ≥ 2.5 
  
               Exercise: Show that e ≥ 2.65. 
 
We give here some standard limits: 
 

(1) Suppose r is a real number and r is a constant.  
(i) If ⎜r ⎜< 1 (i.e., -1 < r < 1), then  0lim =

∞→

n

n
r

(ii) If r > 1, then  ∞=
∞→

n

n
rlim

(2) Suppose a is a real number and a > 0 and a is a constant.  Then 1lim
1

=
∞→

n
n

a  

(3) 1lim
1

=
∞→

n
n

n  

 
We end this section by giving a result that could be useful. 
 
Result: Suppose na  is a sequence.  Then, 0lim =

∞→ nn
a  if and only if 0lim =

∞→ nn
a . 

 

Example: Let 
n

a
n

n
)1(−

=  for all n ∈ N.  Then, 
n

an
1

=  and hence 0lim =
∞→ nn

a .   

    Therefore, . i.e., 0lim =
∞→ nn

a 0)1(lim =
−

∞→ n

n

n
. 

 
2.1.5. Monotonic Sequences 
 

Consider the sequence na  which is 1, 1, .......,
4
1,

4
1,

3
1,

3
1,

2
1,

2
1  

We see that   ......4321 ≥≥≥≥ aaaa
i.e., for all n, .  The terms of this sequence are 1+≥ nn aa non-increasing. 
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Now consider the sequence nb  which is 1, .......,
4
1,

3
1,

2
1  

We see that b1 > b2 > b3 > …… 
i.e., for all n, .  The terms of this sequence are 1+> nn bb decreasing. 
 
Definition 1: Suppose na  is a sequence. Then: 

(1) (a) If for all n,  ,(i.e., ) we say that 1+≥ nn aa ......4321 ≥≥≥≥ aaaa na is  
monotonic decreasing (m.d). 

(b) If for all n, an > an+1 (i.e., a1 > a2 > a3 > ……), we say that na  is strictly  
monotonic decreasing. 

 
(2) (a) If for all n,  (i.e., nn aa ≥+1 ......4321 ≤≤≤≤ aaaa ) we say that na is  
    monotonic increasing (m.i). 
 

(b) If for all n, an+1 > an (i.e., a1 < a2 < a3 < ……), we say that na  is strictly  
monotonic increasing. 

 
Note: For real numbers x, y, yx ≥  means that x > y or x = y. So, we see that if na  is 

strictly m.i it is also m.i and if na  is strictly m.d it is also m.d. 
 
We say that a sequence na  is monotonic if it is m.i or m.d (i.e., 

 or ) ......4321 ≤≤≤≤ aaaa ......4321 ≥≥≥≥ aaaa
 
 
 
 
Examples: 

(1) Consider the constant sequence 
2
1 , 

2
1 ,

2
1 , ……., i.e., the sequence na  where an 

is equal to
2
1  for all n. Then, na  is both m.i and m.d. 

 
(2) Consider the sequence n)1(− , i.e., -1, 1, -1, 1, …… This sequence is neither 

m.i. nor m.d. 
 

(3) Consider the sequence given recursively by 
n

n
n a

a
a

+
=+ 11  for all n ∈ N. This 

sequence is given, once the value of a1 is given. Then, by the recurrence equation, 
we get all the terms. Let a1 have a value such that a1 > 0. Then we see that for all 
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n, an > 0. Also, an – an + 1 = 0
11

2

>
+

=
+

−
n

n

n

n
n a

a
a

a
a . So, an > an + 1 for all n and 

hence na  is m.d. 
 

Question: What happens when a1 = 0? 
 
Definition 2: Suppose na  is a sequence and n0 ∈ N and n0 is a constant.  Then:

(1) (a) If for all n such that ,  (i.e., , we 

say that 
0nn ≥ 1+≥ nn aa .......)21 000

≥≥≥ ++ nnn aaa

na  is eventually monotonic decreasing. 
 

      (b) If for all n such that ,  (i.e., we  0nn ≥ 1+> nn aa .......)21 000
>>> ++ nnn aaa

            say that na  is eventually strictly monotonic decreasing. 
 

(2) (a) If for all n such that , 0nn ≥ 1+≤ nn aa  (i.e., .......)21 000
≤≤≤ ++ nnn aaa , we   

   say that na  is eventually monotonic increasing. 
 

(b) If for all n such that , 0nn ≥ 1+< nn aa  (i.e., .......)21 000
<<< ++ nnn aaa we  

      say that na  is eventually strictly monotonic increasing. 
 

Note: The ‘note’ given in definition 1 applies here too. 
 

Example: Consider the sequence 
12

1
−n

, i.e., -1, 1, .........,
9
1,

7
1,

5
1  

 

     Let 
12

1
−

=
n

an .  We see that for all n such that  (i.e., we can take n2≥n 0 = 2  

     here), .  So, 1+> nn aa
12

1
−n

 is eventually strictly monotonic decreasing.  It  

     is also, eventually monotonic decreasing. 
 
 
2.1.6. Bounded Sequences 
 
Definition: Suppose na  is a sequence.  Then: 

(1) If for all n, an ≤ k where k is a real number constant, we say that na  is 
bounded above. 

(2) If for all n, an ≥ k where k is a real number constant, we say that na  is 
bounded below. 

 10



(3) If na  is both bounded above and bounded below, we say that na  is 
bounded. 

 
We see that na  is bounded means for all n, k1 ≤ an ≤ k2 where k1, k2 are real number 
constants. 
We also have that, na  is bounded if and only if ⎜an ⎜≤ k, where k is a real number 
constant. 
 
Examples: 

(1) Consider the sequence n)1(− , i.e., -1, 1, -1, 1, …. For all n, -1 ≤ (-1)n ≤ 1. 

Hence, n)1(− is bounded. Also, for all n, n)1(− ≤ 1. 
 
(2) Consider the sequence n , i.e., 1, 2, 3, 4, …. For all n, n ≥ 0 (actually n ≥ 1) 

Therefore, n  is bounded below.  

However, n  is not bounded above.  

Hence n  is not bounded. 
 

(3) Consider the sequence n− , i.e., -1, -2, -3, …… For all n, -n ≤ 0. Hence, n−  

is bounded above. However n−  is not bounded below and hence it is not 
bounded.  

 
(4) Let us reconsider example (3) of 2.1.5, i.e., the sequence na  given by the 

recurrence equation 
n

n
n a

a
a

+
=+ 11  and the value of a1. Consider when a1 ≥ 0.  

Then, for all n, an ≥ 0 and 1 ≥  
n

n

a
a
+1

 ≥ 0.  

Let K = max {a1, 1} (i.e., K is the greatest value in the set {a1, 1}).   
Then 0 ≤ an ≤ K for all n.  
Therefore, na  is bounded. 

 
2.1.7. Relationship between monotonicity and boundedness 
 
Theorem: Suppose na  is monotonic (or eventually monotonic). 
 

(1) If na  is m.i (or eventually monotonic) and bounded above, then, na  is 
convergent. 
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(2) If na  is m.i (or eventually monotonic) and not bounded above, then, 
. ∞=

∞→ nn
alim

(3) If na  is m.d (or eventually monotonic) and bounded below, then, na  is 
convergent. 

(4) If na  is m.d (or eventually monotonic) and not bounded below, then, 
. −∞=

∞→ nn
alim

 
Note:  

(i) In (1), if for all n such that n ≥ no, an ≤ k where no ∈ N and k ∈ R, then 
 (see theorem (4) in 2.1.4.) kann

≤
∞→

lim

(ii) In (3), if for all n such that n ≥ no, an ≥ k where no ∈ N and k ∈ R, then 
 (see theorem (4) in 2.1.4.) kann

≥
∞→

lim

 
Examples: 

(1) Consider the sequence na  where for all n, .
1

2
+

=
n

nan  

1
22

1
2)1(2

+
−=

+
−+

=
nn

nan . 

As n increases, 
1

2
+n

 decreases and hence an increases. Therefore,  na  is m.i. 

Also, for all n, 2
1

22 ≤
+

−=
n

an . Therefore, na  is bounded above.  

Therefore, na  is convergent. 

In fact from the algebra of limits we have, 202)
1

12(lim =−=
+

−
∞→ nn

. 

 

(2) Consider the sequence na  where for all n, an = n2. We have that, na  is m.i 

and not bounded above. . ∞==
∞→∞→

2limlim na
nnn

(3) Consider the sequence na  where for all n,  1
na

n
= .  

na  is m.d and bounded below (for all n, ). 0na ≥

Therefore na  is convergent. 

In fact, 1lim lim 0.nn n
a

n→∞ →∞
= =  

 
(4) Consider the sequence na  where for all n, an = -n. 

Then, na  is m.d but not bounded below. 
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lim lim( )nn n
a n

→∞ →∞
= − = −∞ . 

 
(5) Let us consider the sequence in example 3 of 2.1.5 and let us take a1 > 0. 

We saw that then, na  is m.d. 

In example 4 of 2.1.6, we saw that na  is bounded above.  

Therefore na  is convergent. 
So,   for some lim nn

a
→∞

= l l R∈ .  Let us find the value of l. 

1 1
n

n
n

aa
a+ =

+
 for all n. 

As  and hence , 1n n→∞ + →∞ 1lim nn
a l+→∞

= . 

Therefore, lim .
1 1

n

n
n

a ll
a l→∞

= =
+ +

 

i.e., l + l 2 = l. 
i.e.,  l 2 = 0.  
Therefore, l = 0. 
 
*Note: For exercises/Further examples see Ref. 5: pages 387 to 393. 
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2.2  Infinite Series  
 
2.2.1 Definition: Suppose na  is a sequence. We form the sequence nS  where for  

n N∈ , 1 2
1

....
n

n n
i

S a a a a
=

= + + + = i∑ . 

We say that nS  is the sequence of partial sums and Sn is the sum of the first n 

terms of the sequence na . 
S1 = a1,    S2 = a1 + a2,    S3 = a1 + a2 + a3 etc. 

We call the sequence nS  a series and it is denoted by 
1

n
n

a
∞

=
∑ . 

S1, S2, S3 etc are called the terms of the series. 
 

Example: Consider the sequence na  where 1

1
2n na −= . 

     Consider the series , i.e., 
1

n
n

a
∞

=
∑ 1

1

1
2n

n

∞

−
=
∑ . 

         This is a geometric series and we know that, 

        1 1
1

1(1 )1 1 1 21 ... 212 2 2 21
2

n n

n i n
i

S 1

1
n− − −

=

−
= = + + + = = −

−
∑ . 

 
 

2.2.2 Definition: Consider a series 
1

n
n

a
∞

=
∑ , i.e., the series nS  where  

1 2 ....n nS a a a= + + + . If  is convergent we say that the series 
1

n
n

a
∞

=
∑  

converges (or 
1

n
n

a
∞

=
∑  is convergent). 

In this case, li , for some l Rm nn
S

→∞
= l ∈ . 

If nS  is divergent (i.e., it is not convergent), we say that the series 
1

n
n

a
∞

=
∑  

diverges. (or 
1

n
n

a
∞

=
∑  is divergent).  

In the case  is convergent and 
1

n
n

a
∞

=
∑ lim nn

S
→∞

l= , we write  = l. 

 
 
 

nS

1
n

n

a
∞

=
∑

Examples: 
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(1) Reconsider the geometric series 1
1

1
2n

n

∞

−
=
∑   (see 2.2.1) 

We saw that, 1 1
1

1 1 1 11 .... 2 .
2 2 2 2

n

n i n
i

S − −
=

= = + + + = −∑ 1n−  

Now  (since lim 2nn
S

→∞
= 1

1

1 1lim lim( ) 0
2 2

n
nn n

−
−→∞ →∞
= = ). 

Therefore, 1
1

1
2n

n

∞

−
=
∑  is convergent and it converges to 2. 

 

(2) Consider the series  where for any n, 
1

n
n

a
∞

=
∑ 1

( 1)na
n n

=
+

. 

1 1 1
( 1) 1n n n n

= −
+ +

. Let ∑
= +

=
n

r
n rr

S
1 )1(

1  for any Nn∈ . 

Then, ∑ ∑ ∑
= = +

−=
+

−=
n

r

n

r

n

r
n rrrr

S
1 1 1

11)
1

11(
=1

 

                                                = )
1

1....
3
1

2
1()1...

3
1

2
11(

+
+++−++++

nn
 

                = 
1

11
+

−
n

 

(Note: We can also get this result in the following way: 

              ∑ ∑ ∑ ∑
= = =

+

= +
−=−=

+
−

n

r

n

r

n

r

n

r nrrrr1 1 1

1

2 1
1111

1
11 ) 

Therefore,  (since, 1lim =
∞→ nn

S 0
1

1lim =
+∞→ nn

) 

Therefore, ∑
∞

= +1 )1(
1

n nn
 is convergent and it converges to 1. 

 

(3) Consider the series , i.e., ∑
∞

=

+−
1

1)1(
n

n

1
n

n

a
∞

=
∑  where for any  n, . 1)1( +−= n

na

Let , for any n. nn aaaS +++= .....21

Then, Sn = 1 – 1 + 1 - …. , to n terms, 
So, Sn = 1 – 1 + 1 – 1 + …. + 1 – 1 = 0 when n is even, and  

            Sn = 1 – 1 + 1 – 1 + …. + 1 – 1 + 1 =  1 when n is odd. 
Therefore, nS  is divergent. 

Therefore,  is divergent, i.e.,  is divergent. 
1

n
n

a
∞

=
∑ ∑

∞

=

+−
1

1)1(
n

n

 

(4) Consider the series  where for any n, a
1

n
n

a
∞

=
∑ n = n2. 
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The sequence of partial sums nS  is given by . 222 ...21 nSn +++=

For any n,  . 222 ...21 nSn +++= 2n≥

i.e., for any n, Sn  and . 2n≥ ∞=
∞→

2lim n
n

Therefore, .   ∞=
∞→ nn

Slim

Therefore, nS  is divergent. 

Therefore, is divergent. ∑
∞

=1

2

n
n

 

(5) Consider the series . ∑
∞

=

−
1

2

n

n

The sequence of partial sums nS  is given by, Sn = - 12 - 22 - … - n2. 

Therefore for any n,  and . 2nSn −≤ −∞=−
∞→

2lim n
n

Therefore . −∞=
∞→ nn

Slim

Therefore nS  is divergent. 

Therefore  is divergent. ∑
∞

=

−
1

2

n
n

 

Note: A series  could be 
1

n
n

a
∞

=
∑ divergent in any one of the following three ways: 

Let nS  be the sequence of partial sums. 
(i)    ∞=

∞→ nn
Slim

(ii)   −∞=
∞→ nn

Slim

(iii) Neither  nor ∞=
∞→ nn

Slim −∞=
∞→ nn

Slim  nor lSnn
=

∞→
lim for some l ∈ R.             

      (In this case we say that the sequence nS  is oscillatory) 
    
       Possibility (i) is found in Example (4). 
      Possibility (ii) is found in Example (5). 
       Possibility (iii) is found in Example (3). 
 
2.2.3 Fundamental Facts about Infinite Series 

Theorem 1: Consider the series 
1

n
n

a
∞

=
∑  and ∑ . Let 

∞

=1n
nb Rc ∈21,, λλ  be constants.  

Suppose     and  are convergent. 
1

n
n

a
∞

=
∑ ∑

∞

=1n
nb

 
Then:  
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(1) ∑ is convergent and = c
∞

=1n
nca ∑

∞

=1n
nca

1
n

n

a
∞

=
∑ . 

      (Note: For n , let  and  Then, for any n , TN∈ ∑
=

=
n

r
rn caT

1
∑
=

=
n

r
rn aS

1

N∈ n = cSn and  

        if , then, ). lSnn
=

∞→
lim clT

n
n =

∞→
lim

(2)  is convergent and = )(
1

n
n

n ba +∑
∞

=

)(
1

n
n

n ba +∑
∞

= 1
n

n
a

∞

=
∑ + . ∑

∞

=1n
nb

      (Note: For n , let  and  and . Then, for  N∈ ∑
=

=
n

r
rn aS

1
∑
=

=
n

r
rn bT

1

)(
1

r

n

r
rn baU += ∑

=

        any n , , and if N∈ nnn TSU += 1lim lSnn
=

∞→
 and 2lim lTnn

=
∞→

, then, 21lim llU nn
+=

∞→
). 

 

(3)  is convergent and  )( 2
1

1 n
n

n ba λλ +∑
∞

=
12

1
1 )( λλλ =+∑

∞

=
n

n
n ba ∑∑

∞

=

∞

=

+
1

2
1 n

n
n

n ba λ

      (Note: This follows from (1) and (2). Also, when 11 =λ  and 12 −=λ , we get,  

       ∑  - ∑ ). =−
∞

=

)(
1

n
n

n ba
1

n
n

a
∞

=
∑

∞

=1n
nb

 
Theorem 2: Suppose na  is a sequence of non-negative terms and nS  is a sequence of 
partial sums. 

Then,  is convergent if and only if 
1

n
n

a
∞

=
∑ nS  is bounded above (i.e., for all n, Sn ≤ k for 

some constant k ∈ R). 
 
(Note: See the Theorem in 2.1.7) 
 
Examples: 
(1) Suppose nt  is a sequence such that for all n, }9,...4,3,2,1,0{∈nt  and na  is the 

sequence where for any n, n
n

n
t

a
10

= .   

Now consider the series  . 
1

n
n

a
∞

=
∑

(Note: This is actually the infinite decimal, ) ......0 321 ttt
 
Let nS  be the sequence of partial sums. 

Then for any n, 1 2
2 2

9 9 9... .....
10 10 10 10 10 10

n
n n n

tt tS = + + + ≤ + + + . 
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2 1

119 9 9 9 1 1 9 110..... (1 ...... ) ( ) 1 1110 10 10 10 10 10 10 101
10

n

n n−

−
+ + + = + + + = = − ≤

−
n . 

Therefore, for all n, Sn ≤ 1; i.e., nS  is bounded above. 

      Also, na  is a sequence of non-negative terms and hence nS  is m.i. 

      Therefore,  is convergent, i.e., 
1

n
n

a
∞

=
∑ ∑

∞

=1 10n
n

nt  is convergent. 

      (Note: The infinite decimal  is actually ......0 321 ttt ∑
∞

=1 10n
n

nt ) 

 

(2) Consider the series  where 
1

n
n

a
∞

=
∑ n

an
1

= .  Then na  is a sequence of non-negative 

terms.  Let nS  be the sequence of partial sums. 
Let .  Nn∈

Then )
12

1....
12

1
2
1(....)

7
1

6
1

5
1

4
1()

3
1

2
1(1 112 1

−
++

+
+++++++++= +−+ nnnnS  

    )
2

12(.....)
8
14()

4
12(1 1+×++×+×+≥ n

n  

                    = 

to terms

1 1 11 ....
2 2 2

n

+ + + +
1442443

      

                    = 1 + 
2
n  

Therefore, 
2

1
12 1

nS n +≥
−+  and ∞=+

∞→
)

2
1(lim n

n
 

Therefore, for any  for some n. kSRk n ≥∈
−+ 12 1,

Therefore, nS  is not bounded above. 

Also, nS  is m.i. 

Therefore, nS  is divergent. 

Therefore ∑
∞

=1

1
n n

 is divergent. 

 
Theorem 3 (Divergence Test): 

If, not  , then  is divergent. 0lim =
∞→ nn

a
1

n
n

a
∞

=
∑

Note: 

(1) By logic, we have that this is the same as saying ‘If 
1

n
n

a
∞

=
∑  is convergent, then  
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0lim =
∞→ nn

a ’. (However, we cannot say that, if 0lim =
∞→ nn

a  then  is 

convergent. For instance, 

1
n

n

a
∞

=
∑

01lim =
∞→ nn

, but ∑
∞

=1

1
n n

 is divergent. 

(2) Consider the situation when, not 0lim =
∞→ nn

a . 

This can be so in any one of the following four ways. 
(i)  for some l such that lann

=
∞→

lim 0≠l . 

(ii)  ∞=
∞→ nn

alim

 (iii)  −∞=
∞→ nn

alim

      (iv) Neither na  is convergent, nor ∞=
∞→ nn

alim , nor −∞=
∞→ nn

alim . 

 
Examples: 

(1) Consider the general geometric series  (i.e.,  ∑
∞

=

−

1

1

n

nar .....)2 +++ arara

When r > 1:  
∞=−

∞→

1lim n

n
r  (As ∞→−∞→ 1, nn and (see 2.1.4), we have as 

 ) 

∞=
∞→

n

n
rlim

,∞→n ∞→−1nr
Therefore, when a > 0,  ∞=−

∞→

1lim n

n
ar

and when a < 0, . −∞=−

∞→

1lim n

n
ar

Therefore, not, . 0lim 1 =−

∞→

n

n
ar

Therefore, when r > 1,  is divergent. ∑
∞

=

−

1

1

n

nar

 
When r = 1:  

. Therefore, . 0lim 1 ≠=−

∞→
aar n

n
01 ≠=− aar n

Therefore, not, . 0lim 1 =−

∞→

n

n
ar

Therefore, when r = 1,  is divergent. ∑
∞

=

−

1

1

n

nar

 
When r = -1:  

 
⎩
⎨
⎧
−

=−×= −−

even is when 
odd is when 

)1( 11

na
na

aar nn

Therefore, neither -1nar   is convergent, nor 1lim n

n
ar −

→∞
= ∞ , nor . −∞=−

∞→

1lim n

n
ar

Therefore, not, . 0lim 1 =−

∞→

n

n
ar
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Therefore, when r = -1,  is divergent. ∑
∞

=

−

1

1

n

nar

 
When r < -1:  

= ara n ≥−1      (as r >1) and .0>a  

Therefore, not   (see 2.1.4, Theorem 4) 

11 −− = nn raar

Therefore, not  ( see the last result in 2.1.4). 

0lim 1 =−

∞→

n

n
ar

0lim 1 =−

∞→

n

n
ar

Therefore, when r < -1,  is divergent. ∑
∞

=

−

1

1

n

nar

  
This brings us to the final possibility. 
 
When -1 < r < 1:  

 (see 2.1.4) lim 0n

n
r

→∞
=

Therefore,  . 0lim 1 =−

∞→

n

n
ar

However, this does not ensure that  is convergent. ∑
∞

=

−

1

1

n

nar

Let nS  be the sequence of partial sums. 

0
1111

)1(
−

−
→×

−
−

−
=

−
−

=
r

ar
r

a
r

a
r
raS n

n

n  as n →∞, since rn → 0 as n → ∞. 

Therefore 
r

aSnn −
=

∞→ 1
lim . 

Therefore, when-1< r < 1,  is convergent and ∑ = ∑
∞

=

−

1

1

n

nar
∞

=

−

1

1

n

nar
r

a
−1

. 

 
 

(2) Consider the series ∑
∞

=1

1
n nλ  where R∈λ  and is a constant. We saw that when 

1=λ , ∑
∞

=1

1
n nλ  is divergent. (i.e., ∑

∞

=1

1
n n

 is divergent). 

Let us consider the situation for the other values of λ . 
 
When λ < 0:  
λ = -k where k = -λ > 0. 

kn
n

=λ

1  an .  (  when k > 0 is a standard limit). ∞=
∞→

k

n
nlim ∞=

∞→

k

n
nlim

Therefore, ∞=
∞→ λnn

1lim  and hence by the theorem, ∑
∞

=1

1
n nλ  is divergent. 

 20



Therefore, ∑
∞

=1

1
n nλ  is divergent when λ < 0. 

When  λ = 0:  

 and hence 11lim =
∞→ λnn

. 

Therefore, not 01lim =
∞→ λnn

. 

Therefore, ∑
∞

=1

1
n nλ  is divergent when λ = 0. 

 
When 0 < λ < 1:  
We will postpone the consideration of this case.  We will consider it after the next 
theorem (i.e., Theorem 4). 
 
When λ > 1: 

Although , this does not ensure that ∑
∞

=1

1
n nλ  is convergent.  However, it 

is in fact convergent and we shall now show this: 
Let nS  be the sequence of partial sums. 
Let  .Nn∈

)
)12(

1...
)12(

1
)2(

1(....)
7
1

6
1

5
1

4
1()

3
1

2
1(1 112 1 λλλλλλλλλ −

++
+

+++++++++= +−+ nnnnS

 )2
)2(

1(.....)4
4
1()2

2
1(1 n

n ×++×+×+≤ λλλ  

 = 1 + n)2(
1....

)2(
1

2
1

1211 −−− +++ λλλ  

 =  where nrrr ++++ ....1 2
12

1
−= λr  and 0 < r < 1. (as )01 >−λ  

            = 
r

r n

−
− +

1
1 1

 

 = 
rr

r
r

n

−
≤

−
−

−

+

1
1

11
1 1

 

Therefore, 
r

S n
−

≤
−+

1
1

12 1  where 12
1
−= λr . 

 
Let  Then, there is .Nm∈ Nn∈  such that  (since, 

).  Since the terms of the series are non-negative and 

, 

mn >−+ 12 1

∞=−+

∞→
)12(lim 1n

n

mn >−+ 12 1

r
SS nm −

≤≤
−+

1
1

12 1 . 

11
=λn

01lim =
∞→ λnn
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Therefore for any 
r

SNm m −
≤∈

1
1, . 

Therefore, nS  is m.i and bounded above. 

Therefore, nS  is convergent. 

Therefore, ∑
∞

=1

1
n nλ  is convergent when λ > 1. 

 
In the next two theorems we will consider only series of positive terms (i.e., series 

 where for all ). 
1

n
n

a
∞

=
∑ 0, >∈ naNn

 
Theorem 4 (Comparison Test): 

Let , be 
1

n
n

a
∞

=
∑ ∑

∞

=1n
nb series of positive terms and let Nn ∈0 , be a constant for which,      

an ≤ bn for all n such that n ≥ n0. 
 
Then: 
 

If is convergent, then,  is also convergent. ∑
∞

=1n
nb

1
n

n

a
∞

=
∑

(Note: By logic, this is the same as saying, ‘If 
1

n
n

a
∞

=
∑  is divergent, then, ∑

∞

=1n
nb is 

divergent’) 
 
Example: 

We said in Example 2 of Theorem 3 that we will be considering here the series ∑
∞

=1

1
n nλ  

when 0 < λ < 1. 
Let 0 < λ < 1. 

Then for any λnn
Nn 11, ≤∈  (since,  when 0 < λ < 1) nn ≤λ

But ∑
∞

=1

1
n n

 is divergent.  Therefore, ∑
∞

=1

1
n nλ  is divergent; i.e., ∑

∞

=1

1
n nλ is divergent when       

0 < λ < 1. 
So, we have from this and what we had in Example 2 of Theorem 3, that,  
 

∑
∞

=1

1
n nλ  is convergent if and only if 1>λ  
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Theorem 5 (Limit Comparison Test): 

Let , ∑ be 
1

n
n

a
∞

=
∑

∞

=1n
nb series of positive terms and l

b
a

n

n

n
=

∞→
)(lim  for some . Rl∈

(Note: By Theorem 4 of 2.1.4, we have that l ≥ 0 since for all 0, >∈
n

n

b
a

Nn ). 

Then: 

If l > 0, is convergent if and only if is convergent, and if l = 0, when is 

convergent, is also convergent. 

1
n

n

a
∞

=
∑ ∑

∞

=1n
nb ∑

∞

=1n
nb

1
n

n

a
∞

=
∑

 

*Remark: For any given series  ∑
∞

=1n
nx if we change the values of a finite number of terms 

(for example consider the series 
1

n
n

a
∞

=
∑  where 

n
an

1
= . Now consider the series  

where b

∑
∞

=1n
nb

1 = 0 and b5 = 0 and b12
 = 122

1   and 100100 2
1

=b  and for the other values of n,       

bn = an.  Here ∑ has been obtained by changing the values of a finite number of terms 

of  , i.e., 

∞

=1n
nb

1
n

n

a
∞

=
∑ ∑

∞

=1

1
n n

), then, the convergence or divergence of the new series is the same 

as that of the original series. 
 
Let nS  be the sequence of partial sums of the original series and let nT  be the 
sequence of partial sums of the new series.  Then, kST nn +=  for all n such that n ≥ n0, 
where  and  Rk ∈ Nn ∈0 are constants. On the other hand, if we delete a finite number of 

terms (for example consider a series 
1

n
n

a
∞

=
∑ and we form a series  by deleting a∑

∞

=1n
nb 1, a2, 

a3 and a14), with the notation used above we have, kST nnn += + 0
 for all n such that n ≥ 

n1, where  and  Rk ∈ Nnn ∈10 , are constants. 
If both these changes are made, we get Tn in the above form. 
In all these, the convergence or divergence of the new series is the same as that of the 
original series. 
* So, although we insisted in Theorems 4 and 5, that for all n, an > 0 and bn > 0, the  
    conclusions of these two theorems still remains true if, for all n such that n ≥ n0,  an > 0  
    and bn > 0 where is a constant. Nn ∈0

 
 
Do the exercises on Page 276 of Ref 1. 

 

 23



Alternating series: A series whose terms are alternately positive and negative is said to be 

an alternating series. An alternating series is of the form where for all n,     

a

∑
∞

=

+−
1

1)1(
n

n
n a

n > 0. 
 
Theorem 6 (Alternating Series Theorem): 

Let  be an ∑
∞

=

+−
1

1)1(
n

n
n a alternating series and na  be m.d and 0lim =

∞→ nn
a .  Then, 

 is convergent. ∑
∞

=

+−
1

1)1(
n

n
n a

 
 
Example:  

Consider the series ....,
5
1

4
1

3
1

2
11 −+−+−  i.e., the alternating series  where ∑

∞

=

+−
1

1)1(
n

n
n a

n
an

1
= .  Then, na  is m.d and 0lim =

∞→ nn
a .  Therefore the series ∑

∞

=

+−
1

1 1)1(
n

n

n
 is 

convergent. 
 

Absolute Convergence: A series 
1

n
n

a
∞

=
∑  is said to be absolutely convergent if ∑

∞

=1n
na  is 

convergent. 
 

Theorem 7: Suppose  
1

n
n

a
∞

=
∑ is absolutely convergent. Then, 

1
n

n

a
∞

=
∑ is convergent.  

 
Definition: A series is said to be conditionally convergent if it is convergent but it is not 
absolutely convergent. 
 
Examples: 

(1) Consider the alternating serires ∑
∞

=

+−
1

1 1)1(
n

n

n
. 

nn
n 11)1( 1 =− +  and so ∑

∞

=

+−
1

1 1)1(
n

n

n
 

is ∑
∞

=1

1
n n

 which is divergent.  Therefore ∑
∞

=

+−
1

1 1)1(
n

n

n
 is conditionally convergent. 

(See the above example) 

(2) The series ∑
∞

=

+−
1

2
1 1)1(

n

n

n
 is absolutely convergent. 

 
The Ratio Test and the Root Test: 
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Theorem 8 (Ratio Test): Consider a series 
1

n
n

a
∞

=
∑  where for all n,  (0≠na or at least for 

all  where  is a constant).  0,0 ≠≥ nann Nn ∈0 Then: 

(1) If l
a

a

n

n

n
=+

∞→

1lim  and l < 1, 
1

n
n

a
∞

=
∑  is absolutely convergent. 

(2) If l
a

a

n

n

n
=+

∞→

1lim  and l > 1, 
1

n
n

a
∞

=
∑ is divergent. 

(3) If ∞=+

∞→
n

n

n a
a 1lim , is 

1
n

n

a
∞

=
∑ divergent. 

 
 
 

Theorem 9 (Root Test): Consider a series 
1

n
n

a
∞

=
∑ . 

(1) If la n
nn

=
∞→

1

lim  and l < 1, 
1

n
n

a
∞

=
∑  is absolutely convergent. 

(2) If la n
nn

=
∞→

1

lim  and l > 1, 
1

n
n

a
∞

=
∑ is divergent. 

(3) If ∞=
∞→

n
nn

a
1

lim , is 
1

n
n

a
∞

=
∑ divergent. 

 
Examples: 

(1) Consider 
0

1where 
!n n

n

a a
n

∞

=

=∑ . The convergence or divergence, as the case may 

be, is the same as that of 
1

n
n

a
∞

=
∑ and we will consider this series (see * remark 

appearing just after Theorem 5). 

Then, 0
1

1
)!1(

!

!
1

)!1(
1

1 →
+

=
+

=
+

=+

nn
n

n

n
a

a

n

n  as ∞→n . (i.e., )0lim 1 =+

∞→
n

n

n a
a

. Since 

0 < 1, by the Ratio Test, ∑
∞

=1 !
1

n n
 is convergent and hence, ∑

∞

=0 !
1

n n
 is convergent. 

(Note: (i) It is absolutely convergent, but since the terms are positive, it is more  
                sensible to say that it is convergent. 

           (ii)  , while ....
!3

1
!2

11
!

1
1

+++=∑
∞

=n n
) 

 

....
!3

1
!2

111
!

1
0

++++=∑
∞

=n n
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* Note: ∑
∞

=0 !
1

n n
 is denoted by e and in logarithms, loge x is called the natural  

logarithm of x and it is written as ln x. 
In this context, we also mention another standard limit (see 2.1.4), namely  

e
n

n

n
=+

∞→
)11(lim . 

We also considered this series in 2.1.4 as an example for Theorem 4 and  
we showed there that e ≥ 2.5. 

 

(2) Consider the series , where 
1

n
n

a
∞

=
∑ !n

na
n

n = . 

Then, n
n

n

n

n

n

n

nn
n

n
n

n
n

a
a

)11()1(

!

)!1(
)1( 1

1 +=
+

=
+
+

=

+

+ . 

Now, we know that, 5.2)11(lim ≥=+
∞→

e
n

n

n
. 

Therefore, 1lim 1 >=+

∞→
e

a
a

n

n

n
. 

Therefore, ∑
∞

=1 !n

n

n
n  is divergent. 

Note: This can be more easily proved using the Divergence Test (Theorem 3) as 

 for all n and hence 
factors

..... 1 2 ..... !n

n
n n n n n n= × × × ≥ × × × =1442443 1

!
≥

n
nn

 for all n. 

 
 

(3) The sequence na  is given by the recursion formula, nn a
n
na ×
+

=+ 1

2

1  for any      

n ∈ N, and a1 = -1.   
Then,  

      ∞=
+

×=
+

=
∞→∞→

+

∞→
)

11

1(lim
1

limlim
2

1

n

n
n
n

a
a

nn
n

n

n
 

 Therefore, ∑  is divergent. 
∞

=1n
na

 

(4) Consider the series ∑
∞

=1 2n
n

n , i.e., the series ∑ where 
∞

=1n
na nn

na
2

= . 
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Then, 
n

n
n

n
na

1
1

2
⎟
⎠
⎞

⎜
⎝
⎛= =

2

1
nn .  Since, 1lim

1

=
∞→

n
n

n   (see 2.1.4),  

.1
2
1lim

1

<=
∞→

n
nn

a  

Therefore, ∑
∞

=1 2n
n

n  is convergent. 

 
Exercise: Use the Ratio Test to show that this series is convergent. 
 

(5) Consider the series ∑
∞

= −
+

1 12
1

n
n

nn . 

n

n

n

n

n

n

n nnnn
⎟
⎠
⎞

⎜
⎝
⎛=≥

−
+

=
−
+

2212
1

12
1  for all n ∈ N. 

Therefore, ∞→=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛≥

−
+

2212
1

11

nnn nnn

n

n

 as ∞→n . 

Therefore, ∞=
−
+

∞→

n

n

n

n

n
1

12
1lim . 

Therefore, ∑
∞

= −
+

1 12
1

n
n

nn  is divergent. 

 
Use some of the steps in the above proof and with the use of the Comparison Test 
(Theorem 4), get the above result by using the Ratio Test. 

 
     

(6) Consider the series ∑
∞

= +1 1n

n

n
e .  For all n ∈ N, 

12 +
≤

n
e

n
e nn

  (since n + 1 ≤ 2n). 

e
n

e
n

e

nn

nn

→
×

= 11

1

2
2

 as ∞→n   (since 1lim2lim
11

==
∞→∞→

n
n

n
n

n ) 

Therefore, 1
2

lim

1

>=
∞→

e
n

e nn

n
 (we know that e ≥ 2.5) 

Therefore, ∑
∞

=1 2n

n

n
e  is divergent. 

Therefore, by the Comparison Test, ∑
∞

= +1 1n

n

n
e  is divergent. 
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In connection with determining whether a series is convergent or whether it is 
divergent, we may need a few more standard limits. 

 
We give these standard limits without going into much detail: 
 
(1) If  and cxnn

=
∞→

lim ,)(lim lxf
cx

=
→

 then, lxf nn
=

∞→
)(lim . 

 For example, 1sinlim
0

=
→ x

x
x

 and 01lim =
∞→ nn

. 

 Therefore, 1
1

1sin
lim =

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∞→

n

n
n

. 

 
  
(2) Suppose . Then: ∞=

∞→ nn
xlim

(i) If ∞=
∞→

)(lim xf
x

, then, ∞=
∞→

)(lim nn
xf . 

(ii) If −∞=
∞→

)(lim xf
x

, then, −∞=
∞→

)(lim nn
xf . 

 
          
(3) Suppose  and r, s > 0 and r, s are constants. Rsr ∈,
         Then,  ((ln n)∞=−

∞→

sr

n
nn )(lnlim -s is defined for all n such that n ≥ 2) and, 

                    . 0)(lnlim =−

∞→

sr

n
nn

 

         Exercise: Show that ∑ where a
∞

=1n
na n = 5)(ln n

n for all n such that  n ≥ 2 (see *  

                         remark, just after Theorem 5), is divergent. 
 

         *Exercise: Consider  where ∑
∞

=1n
nb

n
bn ln

1
=  for all n ≥ 2. Consider na  where   

                           
2
1

1

n
an = . Show that 0lim =

∞→
n

n

n b
a

 and using Theorem 5 show that is  ∑
∞

=1n
nb

                           divergent.  Deduce that ∑
∞

= +1 )1ln(
1

n n
 is divergent (See * note) 

 
*Note: We take this occasion to belatedly state a result on sequences. 
 
Result on Sequences: Suppose na  is a sequence and k is an integer constant. Suppose 

.  Rl∈ Then: 
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(i)  if and only if lann
=

∞→
lim la knn

=+∞→
lim  

(ii)  if and only if ∞=
∞→ nn

alim ∞=+∞→ knn
alim  

(iii)  if and only if −∞=
∞→ nn

alim −∞=+∞→ knn
alim . 

 
Note: When k > 0, kna +  is the sequence nb  where for any n, knn ab += . (i.e., b1 = ak+1,  
          b2 = ak+2 etc). For instance, when k = 5, b1 = a6, b2 = a7, b3 = a8 etc). 
          When k < 0, kna +  is a sequence nb  where knn ab +=  when   1+−≥ kn
          (i.e., n + k ≥ 1), and when nbkn ,1 −≤≤ could take whatever value we give them.  
          For example, 5−na  is a sequence nb  where for 165 .,i.e(,6 ababn nn ==≥ − ,         
          b7 = a2, b8 = a3 etc) and b1, b2, b3, b4 and b5 could take whatever value we give  
          them. 
 

          So, in the previous exercise, if nc  is the sequence where cn = 
)1ln(

1
+n

 and nT  

          is the sequence of partial sums of the sequence (i.e., T 1 = c1, T2 = c1 + c2,                 
          T3 = c1 + c2 + c3 etc) and nS  is the sequence of partial sums of the sequence 

nb ,   

          then, we have: 
)1ln(

1....
3ln

1
2ln

1
+

+++=
n

Tn  and 
n

bSn ln
1....

3ln
1

2ln
1

1 ++++=   

          and for any n such that n ≥ 2, Tn = Sn+1 – b1, i.e.,  Tn = Sn+1 + constant. 
  
         From this we get, nT  is convergent if and only if nS  is convergent.  Since we  

         showed that nS  is divergent, we get that nT  is divergent,  i.e., ∑
∞

= +1 )1ln(
1

n n
 is  

         divergent. 
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2.3 Power Series 
 
2.3.1 Fundamental facts about Power Series 
 
Definition:  

Consider a series ∑  (i.e., ..) 

where 

∞

=

−
0

)(
n

n
n cxa ....)()()( 3

3
2

210 +−+−+−+ cxacxacxaa

na  is a sequence with first term a0 and Rcx ∈, and c is a constant while x is a 
variable.  We say that, this is a power series about c. An important special case is when    

c = 0 where we have the power series about 0 which is . ∑
∞

=0n

n
n xa

 
From a given context it is understood the number c about which it is a power series and 
we refer to any one of these series as just a power series. 
 

Example: Consider the series .  This is the power series ∑  

where a

....1 32 ++++ xxx
∞

=0n

n
n xa

n = 1 for all .  It is }0{∪∈ Nn also a geometric series and it is convergent only 

when 1<x  and  = ....1 32 ++++ xxx  when ,1<x  i.e., -1 < x < 1. 
x−1

1

 

Theorem 1: Consider a power series . Then, one and only one of the 

following possibilities occur: 

∑
∞

=

−
0

)(
n

n
n cxa

 
(1) It converges for all values of x in R. 
(2) It converges only when x = c. 
(3) There is a real number R1 , such that the power series converges for all such 

that  (i.e., 
Rx∈

11 RcxRc +<<− 1Rcx <− ) and diverges when  and when 

 (i.e., when 
1Rcx +>

1Rcx −< 1Rcx >− ) 
 
(Note: It may or may not converge when 1Rcx += . This is so also when .) 1Rcx −=
 
The set of all values for which a power series converges is called its interval of 
convergence 
 
Also: We say that the radius of convergence of the power series is 
          (i) ∞  in the case of (1). 
          (ii) 0, in the case of (2). 
          (iii) R1 in the case of (3). 
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Examples: 

(1) Consider the power series ∑
∞

=0 !n

n

n
x .  By application of the Ratio Test we get that the 

radius of convergence is ∞ (i.e., it converges for all Rx∈ ) 
 

(2) Consider the power series . By applying the Root Test, we get 

that the radius of convergence is 0 and the series converges only when x = 1. 

∑
∞

=

−+
0

)1()1(
n

nn xn

 

(3) Consider the power series ∑
∞

=0 2n
n

nx   (i.e., .....
842

1
32

++++
xxx  ). By the Ratio Test 

we get that the radius of convergence is 2.  It does not converge when x = 2 and 
when x = -2.  Therefore, the interval of convergence is (-2, 2), i.e., the set of all 

 such that -2 < x < 2. Rx∈
 

(4) Consider the power series .....
32

1
32

++++
xxx  , i.e.,  where ∑

∞

=0n

n
n xa

n
an

1
=  for 

all  and a1≥n 0 = 1. 
 
In order to find the radius of convergence and the interval of convergence, it is 

sufficient to consider the series ∑
∞

=1n

n

n
x . Then, by the Ratio Test we get that the 

radius of convergence is 1 and when x = 1 the series diverges (since ∑
∞

=1

1
n n

 is 

divergent) and when x = -1 the series converges by the Alternating Series 
Theorem (Theorem 6). (Note: Although in an alternating series the first term is 
positive, here the first term is negative.  But this does not matter since, if we have 

a series  with being an alternating series, taking ∑
∞

=

−
1

)1(
n

n
n a ∑

∞

=

+−
1

1)1(
n

n
n a nS  as 

the sequence of partial sums of the series  and ∑
∞

=

−
1

)1(
n

n
n a nT  as the sequence of 

partial sums of the series , then, T∑
∞

=

+−
1

1)1(
n

n
n a n = - Sn and so both converge or 

diverge together. ) 
 
 
Therefore, the interval of convergence is [-1, 1), i.e., the set of all such that 

. 
Rx∈

11 <≤− x
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Theorem 2 (Differentiation of Power Series) 

Consider a power series  (i.e, ) and suppose 

that the radius of convergence is R

∑
∞

=

−
0

)(
n

n
n cxa ....)()( 2

210 +−+−+ cxacxaa

1 for some R1 such that R1 > 0.  Let I denote the 

interval of convergence.  Let f be the function given by, f (x) = ∑ , x ∈ I.  

Then, for any x ∈ R such that, c – R

∞

=

−
0

)(
n

n
n cxa

1 < x < c + R1,  

....)(3)(2)()( 2
321

1

1
+−+−+=−=′ −

∞

=
∑ cxacxaacxnaxf n

n
n  

f  is differentiable at x when 1Rcx <−   (i.e., c – R1 < x < c + R1) and  is equal to 

the series  (or ) and 

)(xf ′

1

1
)( −

∞

=

−∑ n

n
n cxna n

n
n cxan )()1(

0
1 −+∑

∞

=
+ this series also has radius of 

convergence R1. 
 

If the radius of convergence of  is ∞, a similar result holds but in this case f  

is differentiable at x for all x ∈ R, and the series  which is equal to 

∑
∞

=

−
0

)(
n

n
n cxa

1

1
)( −

∞

=

−∑ n

n
n cxna )(xf ′  

also has ∞ as its radius of convergence. 
 
*Note:  
(1) The differential coefficient of  is  ....)()()( 3

3
2

210 +−+−+−+ cxacxacxaa
      which is the series got by differentiating the terms  ....)(3)(2 2

321 +−+−+ cxacxaa
     of the given series. 
 
*(2) We can repeatedly apply this theorem to get: For any Nk ∈ ,  

       .   kn

kn
n

k cxaknnnxf −
∞

=

−+−−= ∑ )()1)....(1()(

      
(i.e., , ....)())2(...43()())1(...32(!)( 2

21 +−+×××+−+×××+= ++ cxakcxakakxf kkk
k

      i.e., ....))(())(())(()( 2
2

1
1 +−+−+−= +

+
+

+
k

kk

k
k

kk

k
k

kk

k
k cxa

dx
dcxa

dx
dcxa

dx
dxf )  

      where x takes the values as it was for )(xf ′ . 
 
*(3) All this applies when the radius of convergence is ∞  and here x takes all values in R,  
        for  and for  where )(xf ′ )(xf k Nk ∈  and all the series mentioned have radius of  
        convergence . ∞

*Exercise/Result: Show that for any Nk ∈ , 
!

)(
k

cfa
k

k = . 
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Theorem 3: Let f (x) = ∑ ,  c – R
∞

=

−
0

)(
n

n
n cxa 1 < x < c + R1 where R1 > 0 and R1 is the 

radius of convergence of this power series. 
 
Then:  

(a)  where C is the integration constant and the radius of  ∫ ∑ +
+
−

=
∞

=

+

C
n

cxa
dxxf

n

n
n

0

1

1
)(

)(

      convergence of this power series is also R1. 
 
(i.e., ∫ +−+−+ dxcxacxaa ....))()(( 2

210 ∫ ∫∫ +−+−+= .......)()( 2
210 dxcxadxcxadxa  

                                                                    = Ccx
a

cx
a

cxa ++−+−+− .....)(
3

)(
2

)( 3221
0  

             = C
n

cxa
n

n
n +

+
−∑

∞

=

+

0

1

1
)(

) 

 
(b) If I is the interval of convergence and Iba ∈,  and a < b and a, b are interior points of  

      I, then,  ∑∫ ∑
∞

=

++∞

=

+

⎥
⎦

⎤
⎢
⎣

⎡
+
−

−
+
−

=⎥
⎦

⎤
⎢
⎣

⎡
+
−

=
0

11

0

1

1
)(

1
)(

1
)(

)(
n

n
n

n
n

b

a

b

a n

n
n

n
caa

n
cba

n
cxa

dxxf  

                                                                     = ∑∑
∞

=

+∞

=

+

+
−

−
+
−

0

1

0

1

1
)(

1
)(

n

n
n

n

n
n

n
caa

n
cba

 

 
(Note:   

 and hence,  ). ∑ ∫∫ ∑
∞

=

∞

=

−=−
00

))(())((
n

b

a

n
n

b

a
n

n
n dxcxadxcxadxcxa

n
cxa b

a

n
n

b

a

n
n ∫ −=⎥

⎦

⎤
⎢
⎣

⎡
+
− +

)(
1
)( 1

  
 

*Note: When the radius of convergence is ∞, f (x) = ,  ∑
∞

=

−
0

)(
n

n
n cxa Rx∈  and (a), (b)  

             hold but in (a) the radius of convergence of ∑
∞

=

+

+
−

0

1

1
)(

n

n
n

n
cxa

 is ∞ and in (b), I  = R  

             and any a, b ∈ R are always interior points of R. 
 
Examples:  

(1)  Rxxxx
n
xxf

n

n

∈++++== ∑
∞

=

....,
!3!2!1

1
!

)(
0

32

      (Note: The radius of convergence of this power series is ∞) 
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      Let . Rx∈

      ......
!4

4
!3

3
!2

21)(
32

+++×+=′ xxxxf  

                = ...
!3!2!1

1
32

++++
xxx  

                = f (x) 
 
       * This function is called the exponential function and f (x) is denoted by exp(x).   
          Also, it is denoted by ex. 
 
          

So we have xx ee
dx
d

=  for all Rx∈  

 
 

(2) ∑
∞

=

+−+−=−=
+ 0

32 ....1)1(
1

1
n

nn xxxx
x

  where 11 <<− x . 

      (The interval of convergence of  is (-1, 1). i.e., the set of all such  ∑
∞

=

−
0

)1(
n

nn x Rx∈

        that ) 11 <<− x
  

       Therefore, ∫ ++−+−=
+

Cxxxxdx
x

......
4321

1 432

 where -1 < x < 1   

                                                                        (Note: Actually this is true for ) 11 ≤<− x

                       =  ∑
∞

=

− +−
1

1)1(
n

n
n C

n
x ,  where C is the integration constant. 

 

     Therefore, ln(1 + x) =∑
∞

=

− +−
1

1)1(
n

n
n K

n
x  for some constant K.                                  

      (Since, ∫ ++=
+

constant)1ln(
1

1 xdx
x

) 

 
       When x = 0, we get, ln 1 = K, i.e., K = 0. 
       

       Therefore, ln(1 + x) =∑
∞

=

− −+−=−
1

32
1 ....

32
)1(

n

n
n xxx

n
x   where -1 < x < 1   

       (Note: Actually this is true for 11 ≤<− x ) 
 

Theorem 4: Let f (x) = ∑ ,  c – R
∞

=

−
0

)(
n

n
n cxa 1 < x < c + R1 where R1 > 0 and is the  

radius of convergence of this power series. 
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Suppose,   is convergent when ∑
∞

=

−
0

)(
n

n
n cxa 1Rcx +=   

(i.e.,  is convergent and n

n
n Ra 1

0
∑
∞

=

IRc ∈+ 1  where I is the interval of convergence and 

 is the right end point of this interval).   1Rc +
 
Let . 1Rcb +=

Then,      ∑
∞

=→
=

−
0

1)(lim
n

n
n

bx
Raxf

( means the limit of f(x) as x tends to b but )(lim xf
bx −→

x taking values such that x < b) 

 
*A similar result holds for  where )(lim xf

ax +→
1Rca −= . 

 
Example:  

We saw that, ln(1 + x) = ...
432

432

+−+−
xxxx   where -1 < x < 1. 

By the theorem,  

....
4
1

3
1

2
11)1ln(lim

1
+−+−=+

−→
x

x
 

i.e., ln 2 = ....
4
1

3
1

2
11 +−+− . 

 
 
 
2.3.2. Taylor and Maclaurin Series
 

Consider a power series with radius of convergence Rn

n
n cxa )(

0
−∑

∞

=
1 for some R1 > 0 (or 

radius of convergence ∞).  

Then, we have a function f (x) = , c – Rn

n
n cxa )(

0
−∑

∞

=
1 < x < c + R1  (or ). Rx∈

We showed that 
!

)(
n

cfa
n

n =  for all Nn∈ .  (See Ex/Result after Theorem 2, in 2.3.1) 

i.e., ∑
∞

=

−=
0

)(
!

)()(
n

n
n

cx
n

cfxf , c – R1 < x < c + R1  (or Rx∈ ). 

 
Definition: Now, let us consider functions, not given in terms of power series (example 
f(x) = sin x, ) Rx∈
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We call the series ∑
∞

=

−
0

)(
!

)(
n

n
n

cx
n

cf  the Taylor Series for f about c and we call the Taylor 

Series for f about 0 the Maclaurin Series for f. 
(Note: We must have that f is infinitely differentiable at x = c) 
 
We give without much details (Note: These details are required in order to apply the 
theorem) the following theorem: 
 
Theorem: Suppose f is a function defined on an interval I (Note: I could be R) and c is an 
interior point of I. 

Then: ∑
∞

=

−=
0

)(
!

)()(
n

n
n

cx
n

cfxf  for all x such that c – r1 < x < c + r1 for some r1 > 0 (or 

for all ), i.e., Rx∈ f(x) is equal to its Taylor Series for all x such that c – r1 < x < c + r1 
for some r1 > 0 (or for all ).  Rx∈

When c = 0,  ∑
∞

=

=
0 !

)()(
n

n
n

x
n

cfxf  (i.e., f(x) is equal to its Maclaurin Series) for all x such 

that – r1 < x < r1 for some r1 > 0 (or for all Rx∈ ). 
 
Note: Though we have not given the details regarding the function f that are necessary for   
           the theorem, we give the following facts. 

(1) Obviously, f (x) can be differentiated infinitely at x = c (i.e.,  exists for all   
n ∈ N) 

)(cf n

(2) For any 0)(
!

)(lim),,(, 11 =−+−∈
∞→

n
n

n
cx

n
yfrcrcyx  (or for any x, y ∈ R, 

0)(
!

)(lim =−
∞→

n
n

n
cx

n
yf ). 

This is a sufficient but not necessary requirement. 
 
Examples: 
 
(1) f (x) = sin x, .  Let .  ThenRx∈ Rx∈ xxfxxfxxf cos)(,sin)(,cos)( −=′′′−=′′=′ , 
     and .  Therefore for any n ∈ N,   xxf sin)( =′′′′ ,sin)(,cos)( 2434 xxfxxf nn −== −−

     and , i.e.,   xxf n cos)(14 −=− xxf n sin)(4 = 1)0(,0)0(,1)0( 142434 −=== −−− nnn fff

     and .  Therefore, for any 0)0(4 =nf Ryx ∈, , 0
!

)(lim =
∞→

n
n

n
x

n
yf  (since 1)( ≤yf n  and  

    hence, 
!!

)(
n
x

n
xyf

nnn

≤  and 0
!

lim =
∞→ n

x n

n
). 

    (Note: ∑
∞

=1 !n

n

n
x

 is convergent and hence 0
!

lim =
∞→ n

x n

n
). 
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(2)  where -1 < x < 1. rxxf )1()( +=
       Here, r ∈ R but r ∉ N and r ≠  0. 
       Let -1 < x < 1.  Then,  etc.,                                ,)1)(1()(,)1()( 21 −− +−=′′+=′ rr xrrxfxrxf
       i.e.,  nrn xnrrrxf −++−−= )1)(1)......(1()( .

       Then the Maclaurin Series n

n

n

x
n

f∑
∞

=0 !
)0(  is n

n
x

n
nrrr∑

∞

=

+−−

0 !
)1)....(1( . 

 
 
Therefore, the series converges when -1 < x < 1. 
 

For the proof of n

n

r x
n

nrrrx ∑
∞

=

+−−
=+

0 !
)1)...(1()1(  , see Ref 5: page 34 if you know how 

to solve differential equations, otherwise ignore it. 
 
This series is called a binomial series. 
 
 
For further examples/problems, see Ref 5, pages 433 - 439, examples 2, 3, 7 and 8 and 
problems 1 – 3 (for problem 3 see example 8 on page 423), 4, 5 and 9-17. 
 
To solve some of the problems we state a useful result. 
 

Result: Suppose α  is an interior point of the interval of convergence of  and ∑
∞

=0n

n
n xa β  

is an interior point of the interval of convergence of .  Then, 

 is equal to the convergent series  where for any 

 

∑
∞

=0n

n
n xb

∑∑
∞

=

∞

=

×
00

)()(
n

n
n

n

n
n ba βα ∑

∞

=0n
nc

},0{∪∈ Nn

0
2

2
2

2
1

110 ...)()()()( babababac n
n

n
n

n
n

n
nn αβαβαβ ++×+×+= −

−
−

−  
(i.e.,  ...)...)(( 3

3
2

210
3

3
2

210 +++++++++ βββααα bbbbaaaa
          = ) .....))())(()(())())(( 0

2
211

2
20011000 ++++×+×+ babababababa αβαβαβ

 
When βα = , we get,  and )...( 022110 babababac nnnn

n
n ++++= −−α

...)(...)( 3
3

2
210

3
3

2
210 +++++×++++ αααααα bbbbaaaa  

= … ++++++++++ )()()( 03122130
3

021120
2

011000 babababababababababa ααα
 
*Note: This result could sometimes be used to justify that a function f is equal to its 
Maclaurin series (we need also the Ex/Result given just before Theorem 3) 
 

------------------------------------------------- END ---------------------------------------------- 
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