
5 - BASIC STATISTICS 
 
 
5.1 Random Variables 
 
In this section, we define random variables and study probability distributions of 
discrete and continuous random variables, expected value and variance, and special 
distributions such as Binomial, Poisson, Uniform, Normal and Exponential. Further, 
we study the properties and applications of these distributions as well.   
 
What is a random variable?  

 
Definition:   
Let E be an experiment and S a sample space associated with the experiment. A 
function X assigning to every element s in S, a real number (say X(s) ), is called a 
random variable. 
 
Note that the values of a random variable will always be numbers and are 
determined by chance. Therefore, the values of the random variable cannot be 
predicted in advance. However, it is possible to tell beforehand the possible values 
that the random variable could take, and the chance (probability) of getting those 
values. 
 
By convention, we use CAPITAL LETTERS for random variables (e.g. X), and 
lower case letters to represent the values taken by the random variable (e.g. x). Note 
that the standard abbreviation for ‘random variable’ is r.v. 
 
Example 1:  
Consider selecting a student in a class and recording his or her average mark for all 
the subjects. Here, the sample space is the set of students; the ‘average mark 
obtained by a student in the class’ is the random variable X because it is a function 
from the set of students to the real number, X(s) which  is the average mark of 
student s. 
 
Example 2:  
Toss a coin 3 times. The sample space is  

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 
 
Suppose we define X as the number of heads. 
 
Now, let us consider the value taken by each element of the sample space on X. 
So,  X(HTH) = 2,  X(THT) = 1, etc.  
 
Here, notice that the value taken by X on each element of the sample space is a real 
number. Therefore, X is a random variable according to the above definition. 
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Suppose we define Y such that               Y    =                 1    if 2nd  toss gives a head  
                                                            0    otherwise 
 
Then Y(HTH) = 0, Y(THH) = 1, Y(HHH) =1,    etc. 
 
So, Y is also a random variable according to the definition. 
 
Any function is a random variable as long as it is defined on all elements of S, 
and takes only real values. 
 
There are two types of random variables, discrete and continuous. 
 
 
5.1.1 Discrete Random Variables 
 
A discrete random variable is a random variable that has either a finite number of 
possible values or a countable number of possible values. 
 
Usually, discrete random variables result from counting, such as 0, 1, 2, 3 and so on. 
For example, the number of members in a family is a discrete random variable.  
 
 
5.1.2 Continuous Random Variables 
 
A continuous random variable is a random variable that has either an infinite 
number of possible values that is not countable. 
 
Continuous random variables are variables that result from measurements. For 
example, air pressure in a tyre of a motor vehicle represents a continuous random 
variable, because air pressure could in theory take on any value from 0 lb/in2  (psi) to 
the burning pressure of the tyre. 
 
The distinction between discrete and continuous random variables is important 
because the statistical techniques associated with the two types of random variables 
are different. 
 
Probability Distribution of Random Variables 

 
As the value of a random variable cannot be predicted in advance, it may be useful 
to find the probabilities that correspond to the possible values of the random 
variable.   
 
Definition: 
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The probability distribution of a random variable provides the possible values of 
the random variable and their corresponding probabilities. A probability distribution 
can be in the form of a table, graph, or mathematical formula. 
 
 
5.2  Probability Distribution of a Discrete Random Variable 
 
Let X be a discrete random variable. The most basic question we can ask is: what is 
the probability that X takes the value x? In other words, what is P(X=x)?  
 
5.2.1 Definition   
Let X be a discrete random variable. Suppose X takes countable number of values x1, 
x2, x3, …  . With each possible value xi, we associate a number p(xi) = P(X = xi), then 
we call p(xi), i=1,2,3, … the probability of xi if they satisfy the following conditions.  
 

 1.  ( )iP X x= =∑ 1

 2.  0   ( )  1  for all  iiP X x≤ = ≤
 
 
Example 3:  
Toss a fair coin 3 times. Define X as the number of heads obtained. Find the 
probability distribution of X. 
 
Solution: 
All the 8 outcomes HHH, HHT, HTH, THH, HTT, THT, TTH, TTT are equally 
likely: 

 
So, we can use our knowledge of probability to find out that 

P(HHH) = P(HHT) = ….. = P(TTT) = 1/8  
 
 
Then  P(X = 0) = P({TTT}) = 1/8 
 P(X = 1) = P({HTT, THT, TTH}) =3/8 
 P(X = 2) = P({HHT, HTH, THH}) =3/8 
 P(X = 3) = P({HHH,}) =1/8 
 
These probabilities constitute a probability distribution because they provide the 
corresponding probabilities (> 0) of the possible values of the random variable X, 
and that P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1 (i.e. the property 1 of the 
distribution). 
 
 
Definition: 
The Cumulative Distribution Function (c.d.f.) of a discrete r.v. X is given by  
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( ) ( ) ( )
x

X iF x P X x P X x= ≤ = =∑ , which is the cumulative probability up to the value x. 

 
Example 4:  
Consider the previous example 3. Let X = No. of heads. Find the  
cumulative probability up to each of the values  0, 1, 2, 3. 
 
Solution:  
FX(0) = P (X  0 ) =  ≤

1
8

,  FX(1) = P (X ≤  1 ) =  
1 3 1
8 8 2

+ =  

FX(2) = 1 3 3 7
8 8 8 8

+ + =  ,   FX(3) = 1 3 3 1 1.
8 8 8 8

+ + + =  

 
Verify also that  Fx(-1) = 0,   Fx(0.5) = 1/8,  Fx(4) = 1. 
 
 
Properties of the Cumulative Distribution Function (when X is Discrete)  
 
 1.  F(-∞) = 0, F(+∞) = 1 
 2.  FX(x) is a non-decreasing function of x:  that is  
     if x1 < x2, then FX(x1) ≤ FX(x2). 
 3.  If P(a ≤ X ≤ b) = FX(b) - FX(a) 
 
 
5.2.2  Mean and Variance of a Discrete Random Variable 
 
Having identified the distribution of a discrete random variable, it may now be 
important to introduce the centre and spread of a random variable. We usually use 
the mean to describe the centre of a random variable. The mean of a random variable 
is often called the expected value of the random variable. The variance and standard 
deviation are used to describe the spread of a random variable. Variance is in fact a 
measure of how spread-out the values are around their mean. 
 
Definition: 
The mean and variance of a discrete random variable are given by the following 
formulas. Note that the mean (or expected value) is denoted by µ (or E(X)), and the 
variance is denoted by σ2 or V(X). 
 
 
 
 
 
 
 
 

 

∑ === )](.[)( xXPxXEµ  
 
where x is the value of the random variable and P(X = x) is the 
probability that  X  takes the value  x. Note that µ is the population 
mean because the sum ∑ is taken over all values of the r.v.  
 

2 ( ) ( ( ))V X E X E Xσ = = − 2 .  Here σ is the population standard 
deviation. 
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Note: 

• The expected value of X always lies between the smallest and largest values 
of X. 

• The variance of X is never negative. 
 
To find the standard deviation of the random variable, take the square root of the 
variance. 
 
When computing the V(X), it may be easy to use  which can 
be shown as follows. 

2( ) ( ) [ ( )]V X E X E X= − 2

 
By definition, 

   

2

2 2

2 2

2 2

( ) ( ( ))

         = E(X 2 . ( ) [ ( )] )

         = E(X ) 2 ( ). ( ) [ ( )]

         = E(X ) [ ( )]

V X E X E X

X E X E X

E X E X E X

E X

= −

− +

− +

−
 
 
 
Example 5:  
Consider the previous example 3, and consider X as the number of heads. What are 
the expected value and variance of X? 
 
 
Solution: 
We have seen that the probability distribution of X was: 
 

X = x 0 1 2 3 
P(X=x) 1/8 3/8 3/8 1/8 

 
So, E(X) = 0.(1/8) + 1.(3/8) + 2.(3/8) + 3.(1/8) = 3/2. 
 
V(X) = 02.(1/8) + 12.(3/8) + 22.(3/8) + 32.(1/8)  - [3/2]2  = 3/4, 
     since V(X) = E(X2) – [E(X)]2. 
 
 
 
Now, consider the following theorems with regard to the expected value and the 
variance. The proofs of the theorems are not given here. 
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Theorem 1:  If ‘a’ is a constant, then E(a) = a 
 
Theorem 2:  If ‘a’ is a constant and X is any random variable, then  E(aX) = a E(X) 
 
Theorem 3:  If ‘a’ and ‘b’ are constants, then E(aX + b) = a E(X) + b 
 
Theorem 4:  If ‘a’ is a constant, then V(a) = 0 
 
Theorem 5:  If ‘a’ is a constant and X is any random variable, then   

        V(aX) = a2 V(X) 
 
Theorem 6:  If ‘a’ and ‘b’ are constants, then V(aX + b) = a2 V(X) 
 
Note that these theorems are valid whether X is a discrete or a continuous 
random variable. 
 
 
5.3  The Binomial Probability Distribution 
 
Binomial Experiment 
Suppose that we have a biased coin for which the probability of obtaining a head is 
2/3. We toss the coin 100 times and count the number of heads obtained. This 
problem is typical of an entire class of problems that are characterized by the feature 
that there are exactly two possible outcomes (for each trial) of interest. These 
problems are called binomial experiments. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In th
abov
 

 

Features of a Binomial experiment 
 

1. There are a fixed number of trials. We denote this number by n.  
 
2. The n trials are independent (result of one trial does not depend on 

any other trial), and are repeated under identical conditions. 
 

3. Each trial has only two outcomes; success denoted by S, and failure
denoted by F. 

 
4. For each trial, the probability of success is the same.  We denote 

the probability of success by p and that of failure by q. Since each 
trial results in either success or failure, p + q = 1 and q = 1- p. 
e above experiment of tossing a biased coin, let us now see how it meets the 
e criteria of a binomial experiment. Consider the above features one at a time. 
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1. The coin is tossed 100 times, so there are n = 100 trials (fixed) in this 
case. 

 
2. The trials can be considered as independent, as the outcome of one trial 

has no effect on the outcome of another trial. 
 
3. There are only two outcomes, head or tail. As we are interested in getting 

a head, it can be considered as a success, and getting a tail can be 
considered as a failure.    

 
4. On each trial, the probability p of success is 2/3 (same for all trials). 

In this type of binomial experiments, our interest is to find the probability of a 
certain number of successes (say r) out of n trials.  
 
Here, if X is defined as the number of getting r successes, then we say X is 
distributed as Binomial with parameters n and p.  That is denoted by: 
    X ~ Bin(n, p) 
 
Example 6: 
Suppose a student is taking a multiple-choice question paper, and he has only three 
more multiple-choice questions left to do. Each question has 4 suggested answers, 
and only one of the answers is correct. He has only few seconds left to do these three 
questions, so he decides to randomly select (guess) the answers. The interest here is 
to know the probability that he gets zero, one, two, or all three questions correct. 
 
Solution: 
This is a binomial experiment. Each question can be considered as a trial, so the 
number of trials (n) is 3.  
 
There are only two outcomes for each trial – success (S) indicating a correct answer, 
and failure (F) indicating a wrong answer.  
 
The trials are independent – outcome (correct or incorrect) for any one question does 
not affect the outcome of the others.  
 
Sine he is guessing and there are 4 answers from which to select, the probability of a 
correct answer is p=0.25. The probability q of an incorrect answer is then 1– p = 1 - 
0.25 = 0.75. 
 
So, this is a binomial experiment with n = 3, p = 0.25. So X ~ Bin(3, 0.25). 
 
Now what are the possible outcomes in terms of success or failure for these three 
trials? Here we use the notation SFS to indicate a success on the first question, a 
failure on the second, and a success on the third. There are 8 possible combinations 
of S’s and F’s. They are: 
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 SSS  SSF SFS FSS SFF FSF FFS FFF 
 
The probability for each of the above combinations can be computed using the 
multiplication law as the trials are independent. To illustrate this, let us compute the 
probability of ‘SFS’ (success on the first question, failure on the second, and success 
on the third). 
 
  P(SFS) = P(S).P(F).P(S) = p.q.p = p2q = (0.25)2(0.75) ≈ 0.047 
 
In a similar way, probability of each of the above eight outcomes can be computed, 
and they are given in the table below. 
Table 1 : Probabilities of outcomes for a Binomial experiment with n=3 & p=0.25 
Outcome No. of successes  

( r ) 
Probability 

SSS 3 P(SSS) = P(S)P(S)P(S) = p.p.p ≈ 0.016  
SSF 2 P(SSF) = P(S)P(S)P(F) = p.p.q ≈ 0.047 
SFS 2 P(SFS) = P(S)P(F)P(S) = p.q.p ≈ 0.047 
FSS 2 P(FSS) = P(F)P(S)P(S) = q.p.p ≈ 0.047 
SFF 1 P(SFF) = P(S)P(F)P(F) = p.q.q ≈ 0.141 
FSF 1 P(FSF) = P(F)P(S)P(F) = q.p.q ≈ 0.141 
FFS 1 P(FFS) = P(F)P(F)P(S) = q.q.p ≈ 0.141 
FFF 0 P(FFF) = P(F)P(F)P(F) = q.q.q ≈ 0.422 

  
Let us now compute the probability that the student gets zero, one, two, or all three 
questions correct. 
 
P(X = 1) = P[SSF or FSF or FFS]  
          = P(SFF) + P(FSF) + P(FFS)    as SFF, FSF & FFS are mutually exclusive 
    = 0.423 
 
In the same way, we can find that P(X =2), P(X = 3) and P(X = 0). 
Verify that P(X = 3) = 0.016, P(X =2) = 0.141, and P(X = 0) = 0.422. With these 
results you can see that there is very little chance (0.016) that the student gets all the 
questions correct. 
 
If  X ~ Bin(n, p), then the general formula of computing the probability of getting r 
successes can be specified as: 

 ( )
!( ) ,   r = 0, 1, 2, ..., n

! !
r n rnP X r p q

r n r
−= =

−  

           Where n = no. of trials, p = prob. of success  
            r = no. of successes 
The 

( )
!

! !
n

r n r−
= nCr  is the binomial coefficient which represents the number of 

combinations with n trials having r successes.  As an exercise, compute the 
probabilities in table 1 using the general formula of the binomial distribution. 
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Example 7: 
Suppose that a computer component has a probability of 0.7 of functioning more 
than 10,000 hours. If there are 6 such components, what is the probability that at 
least 4 computer components will function more than 10,000 hours? 
 
Solution: 
This is a binomial experiment with n = 6 and p = 0.7. Therefore, if we define X as 
the number of computer components functioning more than 10,000 hours, then 
X ~ Bin(6, 0.7). 
 
So, the required probability is: 

 P(X ≥ 4) = P(X=4 or X=5 or X=6) 
     = P(X=4) + P(X+5) + P(X=6) 
     = 0.324 + 0.303 + 0.118 
        = 0.745 

 
  
 
  
Mean and Variance of Binomial distribution 
 
Here we can use two formulas to compute the mean (µ) and variance (σ2)  of the 
binomial distribution. 
 
If  X ~ Bin(n, p), then it can be shown that 
 
Mean = µ = n.p   is the expected number of successes and  
Variance = σ2 = n.p.q  is the variance for the number of successes.    
 
 
5.4  The Poisson Probability Distribution 
 
This is another discrete probability distribution. The Poisson random variable, unlike 
the ones we have seen before, is very closely connected with continuous things. 
Suppose that ‘incidents’ occur at random times, but at a steady rate overall. The best 
example is radioactive decay: atomic nuclei decay randomly, but the average number 
λ which will decay in a given interval is constant.  
 
The Poisson random variable X counts the number of independent ‘incidents’ 
which occur very often in a given time interval, volume, area and so forth. 
 
So if, on average, there are 2.4 nuclear decays per second, then the number of decays 
in one second starting now is a Poisson(2.4) random variable. The number of 
telephone calls in a minute to a busy telephone number, and the number of 
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customers arriving at a supermarket in an hour, the occurrence of bacteria in air, the 
number of typographical errors in a page of a book are some more examples.  
 
Although we will not prove it, the probability distribution for a random variable X, 
that is distributed as Poisson is given by the formula: 

.( ) ,       x = 0, 1, 2, ....
!

xeP X x
x

λ λ−

= =  

Where λ represents the average number of occurrences of the random event in the 
interval specified. 
 
We usually write it as  X ~ Poisson(λ). 
 
Example 8: 
A restaurant manager, from his experience knows that vehicles arrive at the drive-
through of the restaurant at the rate of 2 vehicles per minute between 5 p.m. and 6 
p.m. He wants to find out the following. 
 

(a) exactly 6 vehicles arrive between 5.55 p.m. and 6 p.m. 
(b) less than 6 vehicles arrive between 5.55 p.m. and 6p.m. 
(c) at least 6 vehicles arrive between 5.55 p.m. and 6p.m. 

 
Solution: 
Here we can identify that the random variable X, the number of vehicles that arrive 
between 5.55 p.m. and 6 p.m., follows a Poisson distribution. It is given that vehicles 
arrive at the rate of 2 per minute, but the interval of time we are interested in this 
example is 5 minutes. So, λ = 2 x 5 = 10. 
 

(a) The probability that exactly six vehicles arrive between 5.55 p.m. and 6 p.m.  
is :  

  
10 6.10( 6) 0.0631
6!

eP X
−

= = ≈  

(b) The probability that fewer than six vehicles arrive between 5.55 p.m. and 6 
p.m. is : 

           P(X < 6) = P(X ≤ 5)  
              = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) 
              = 0.0671 

(c) The probability that at least six vehicles arrive between 5.55 p.m. and 6 p.m. 
is: 

           P(X ≥ 6) = 1 - P(X < 6) 
    = 1 – 0.0671 
                          = 0.9329 

 
Mean and Variance of Poisson distribution 
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If  X ~ Poisson(λ), then it can be shown that 
 
Mean = µ = λ    
Variance = σ2 = λ 
 
 
 
 
5.5  Probability Distribution of a Continuous Random Variable 
 
A continuous random variable can take any values anywhere in some interval of the 
real line, e.g. [0, ∞) or (0, 1). Very often quantities such as time, weight, height etc. 
are commonly considered as continuous random variables. 
 
Recall that, for a discrete random variable X, the probability distribution lists all 
values that X can take, and give their probabilities. For a continuous random variable 
X, it is impossible to list all the values that X can take. It is also impossible to think 
of the probability that X takes any one specific value.  
 
E.g.: Even between the values 0.99999999 and 1.00000001, there are so many 
values that the probability of each value is negligible. In fact, we write P(X = x) = 0 
for any x, when X is continuous. Instead, we work with intervals for continuous 
random variables:  
 
E.g.  P(X = 0) = 0, but P(0.999 ≤  X ≤  1.001) can be > 0. 
 
 
5.5.1 Definition 
 
X is said to be a continuous random variable if there exists a function f, called the 
probability density function (pdf) of X, satisfying the following conditions: 

(a)  ( ) 1 f x dx
+∞

−∞

=∫
 
(b)  f(x) ≥ 0 for all x 

  
 
Note: 
P(c ≤ x ≤ d) represents the shaded area under the graph in the following figure of the 
probability density function between x = c and x =d.   
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f(x) 

x = c x = d 

 

So, P(c ≤ X ≤ d)= ( ) ( ) ( )
d

X X

c

f x dx F d F c= −∫ . 

 
Properties of the Cumulative Distribution Function (when X is Continuous)  
 
 1.  F(-∞) = 0, F(+∞) = 1 
 
 2.  FX(x) is a non-decreasing continuous function of x. This means that  

FX(x) < FX(y) if x < y. 
 
 3.  P(a ≤ X ≤ b) = FX(b) - FX(a) 
 
 
It makes no difference whether we say P(a < X ≤  b) or P(a ≤ X ≤ b) because  
P(a ≤ X ≤ b)= P(X = a) + P(a < X ≤  b) = P(a < X ≤  b) since P(X = a) = 0. 
 
i.e. for a continuous random variable, P(a < X < b) = P(a ≤ X ≤ b). 
 
However, this is not true for a discrete random variable. 
 
 
 
Definition: 
Let X be a continuous random variable with cumulative distribution function FX(x). 
The probability density function (pdf) of X is: 

XF
( )

d
f x

dx
=  

 

Note : If f(x) is the pdf for a continuous random variable, then ( ) ( )
x

F x f y
−∞

= ∫ dy . 

 This is true only if X is a continuous r.v. 
 
 
5.5.2  Mean and Variance of a Continuous Random Variable 
 
Definition: 
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The mean and variance of a continuous random variable are given by the following 
formulas. 
 

∫
+∞

∞−

== dxxfxXE )(.)(µ  

where f(x) is the probability density function. 
 

2 2( ) ( ( ))V X E X E Xσ = = −            or 
                 =     or 22 )]([)( XEXE −

                 =  ∫
+∞

∞−

− 22 )(. µdxxfx

 
 
 
 
 
 
 
 
 
 
Note : The properties of variance for continuous r.v.’s are exactly the same as for 
discrete r.v.’s. See theorems 1- 6 in section 5.2.2. 
 
 
Example 9: 
Suppose that the random variable X has p.d.f. given by 
 

⎩
⎨
⎧ ≤≤

=
otherwise                0

1x 0 if               2
)(

x
xf  

 
(a) Verify whether f(x) is a p.d.f. 
(b) Find the cumulative distribution function of X 
(c) Find the mean and variance of X 

 
 
Solution: 
(a) f(x) ≥ 0 for all x because  f(x)=2x ≥ 0 when 0 ≤ x ≤ 1, and  
     f(x) = 0 when x takes all the other values. 

 Also,  
1 1

2 1
0

0 0

( ) 2 . [ ] 1f x dx x dx x= =∫ ∫ =

≤

 Therefore, f(x) satisfies the two conditions to become a p.d.f. 
 
(b) The Cumulative distribution function 

1
2

0

0          when x < 0

( ) ( )      when 0  x  1
1           when x > 1

XF x f x dx x

⎧
⎪

= = ≤⎨
⎪
⎩

∫  
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 (c) Mean =
11 3

00

2( ) .2 . 2
3 3
xE X x x dx

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦∫ =  

      

11 4
2 2

0 0

1( ) .2 . 2
4 2
xE X x xdx

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦∫ =  

        So, V(X) = E(X2) – [E(X)]2= 1/2 – 4/9 = 1/18. 
 
 
 
5.5.3 The Uniform Probability Distribution 
 
Let a and b be real numbers with a < b. A uniform random variable on the interval 
[a, b] is, roughly speaking, “equally likely to be anywhere in the interval”. In other 
words, its probability density function is constant (say c) on the interval [a, b] (and 
zero outside the interval). What should the constant value c be?  It can be shown that  
c = 1/(b - a), because the p.d.f. should be f(x) = c  when a ≤ x ≤  b, and it should 
satisfy: 

 [ ] 1. 1    . 1     .( ) 1      
b

b
a

a

cdx c x c b a c
b a

= ⇒ = ⇒ − = ⇒ =
−∫  

 
Therefore, the p.d.f. of the Uniform distribution is : 

     
 1/(b - a)         if a x

( )
0                 otherwise

b
f x

≤ ≤⎧
= ⎨

⎩
 

 
 The Uniform distribution is usually denoted by U(a, b). 
 
Further calculation (or the symmetry of the p.d.f.) shows that the expected value 
is given by (a + b) = 2 (the midpoint of the interval), and V(X) = (b - a)2/12. 
 
The uniform random variable doesn’t really arise in practical situations. However, 
it is very useful for simulations. Most computer systems include a random 
number generator, which apparently produces independent values of a uniform 
random variable on the interval [0, 1]. 
 
 
5.5.4 Normal Probability Distribution 
 
Normal distribution is one of the most important examples of a continuous 
probability distribution. It is probably the most important distribution in statistics 
since many measurements have (approximate) normal distributions, and hence many 
statistical methods have been developed for normally distributed data. 
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The Normal (also known as Gaussian) distribution has two parameters, the mean, µ, 
and the variance, σ2. Note that µ and σ2 satisfy     - ∞ < µ < ∞,  σ2 > 0. 
 
If the continuous random variable is distributed as Normal with mean µ and variance 
σ2, we write it as X ~ N (µ, σ2). 
 
The shape of the normal distribution takes the familiar bell-shaped curve which is 
symmetrical about the vertical line over the mean µ. The parameter σ controls the 
spread of the curve. If the standard deviation σ is large, the curve is flat and more 
spread out, and if it is small, the curve is more peaked (see below).  
 

 
X ~ N (µ, σ1

2)  - Flat            X ~ N (µ, σ2
2)  - Peaked 

      Here, σ1
2 > σ2

2 
 
The total area under the normal curve is always 1. The graph of the normal 
distribution is important because the portion of the area under the curve above a 
given interval represents the probability that a measurement will lie in that interval. 
 
The formula of the shape of the normal distribution is the normal probability density 
function.  If  X ~ N (µ, σ2), then the normal probability density function is: 
 

1 2( )1 2( )
2

x

f x e

µ
σ

σ π

−
−

= , - ∞ < x < ∞, σ > 0 

 
The following empirical rule gives us information about the percentage of data that 
lies within one, two, and three deviations of the mean. 
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Empirical Rule 
 
For a normal distribution, 
 

• Approximately 68% of the data values will lie within one standard 
deviation on each side of the mean. 

• Approximately 95% of the data values will lie within two standard 
deviations on each side of the mean. 

• Approximately 99.7% (or almost all) of the data values will lie within 
three standard deviations on each side of the mean. 
 



 
 
 
 
 
 
 
 
Example 10: 
The lifetime of a computer component is normally distributed with mean µ = 6000 
hours and standard deviation σ = 500 hours. What is the probability that a computer 
component selected at random will last from 6000 to 6500 hours? 
Solution: 
The probability that the lifetime will be between 6000 and 6500 hours can be 
considered as the corresponding percentage of the area under the curve within that 
interval. We can identify that this interval is in fact µ and µ + σ. As we know from 
the empirical rule that the area under the normal curve between µ - σ and µ + σ is 
68%, the area between µ and µ + σ is half of 68% (or 34%) because the normal 
distribution is symmetric over µ. This tells us that the probability a computer 
component will last from 6000 to 6500 hours is 0.34. 
 
 
 
 
Standard Normal Distribution 
 
Normal distributions vary from one another as they depend on two parameters, the 
mean µ and the standard deviation σ. The computation of the area under the curve in 
a specified interval of x values (i.e. probability) is not easy due to the complexity of 
the normal probability density function. It would be a futile task to obtain a table of 
areas (probabilities) under the normal curve for each different combination of µ and 
σ.  
 
Mathematicians have found a way to standardize the distributions so that we can use 
one table of areas for all normal distributions. For this, any normal distribution is 
converted to the standard normal distribution.  
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Standard Normal Distribution 
 
The standard normal distribution is a normal distribution with mean µ = 0 and 
standard deviation σ = 1.  We write it as X ~ N (0, 1). 



 
 
 
 

Theorem:  If X ~ N (µ, σ2), then XZ µ
σ
−=  ~ N (0, 1)  

 
The proof of the theorem is not given here. 
 
The above theorem says that any normal random variable X (with mean = µ and 
variance = σ2) can be converted to a standard normal random variable Z (with 
mean = 0 and variance = 1). The advantage here is that we can use one table which 
shows the areas (probabilities) under the standard normal distribution for any 
interval of z values. A table is given at the end to find the probabilities under the 
standard normal distribution.  
 
 
Example 11: 
Use the table of standard normal distribution to find: 
 

(a) the area (probability) under the standard normal distribution to the left of z = 
-1.00. 

(b) the area (probability) between z = 1.00 and z = 2.70 
(c) area (probability) to the right of z = 0.95 

 
Solution: 

(a) To find the area (probability) to the left of z = -1.00, we use the row headed 
by -1.0 under the column Z of the table, and then move to the corresponding 
position on the right under the column P. We can see that this value is 
0.1587. 
 

(b) Area (probability) between 1.00 and 2.70  
= (area left of 2.70) – (area left of 1.00) 
= 0.9965 – 0.8413 
= 0.1552 
 

(c ) Area (probability) to the right of 0.95 
                                  = (area under entire curve) – (area to the left of 0.95)  

             because P(a ≤ X ≤ b) = FX(b) - FX(a) 
    = 1.0000 – 0.8289 
    = 0.1711 
 
 Alternatively, Area to the right of 0.95 = Area to the left of -0.95 
         = 0.1711 
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This is due to the fact that the standard normal r.v. Z is symmetric about zero, and 
hence, for any positive number c, P(Z ≤ - c) = P(Z ≥ c) = 1 - P(Z ≤  c). 
 
 
 
Note: 
Any table is limited in the number of entries it contains. Interpolation can be used to 
extend the range of values tabulated. For example, suppose you need to find the 
probability (area) under the standard normal distribution to the left of z = -1.02. The 
standard normal table does not give the P value at z = -1.02 (see the table), and it 
only gives the probability values corresponding to z = -1.00 and z = -1.05. Here we 
assume that the normal density function is changing at a roughly constant rate 
between, say, -1.00 and -1.05. So the z = -1.02 will be about two fifth of the way 
between the corresponding P values for z = -1.00 (i.e. 0.1587) and z = -1.05 (i.e. 
0.1469). So, the corresponding P value for z = -1.02 is:   
     (2/5)*(0.1587 – 0.1469) + 0.1469 = 0.15162 
 
Sometimes, we may need to calculate the value of a normal random variable 
required for the variable to be at a certain proportion or probability rather than 
calculating the proportion or probability for a given value of a normal random 
variable. This is illustrated by an example given below.  
 
Example 12: 
Consider the average marks (say X) obtained by 200 students in a particular class. It 
is assumed that the average marks of students are normally distributed with mean = 
58.7 and standard deviation = 15.2. Find the average mark of a student at the 40th 
percentile. In other words, we need to know the average mark of a student that 
separates the bottom 20% of students from the top 80% of students. 
 
Solution: 
The following figure shows the normal curve with the unknown value of X 
separating the bottom 20% of the distribution from the top 80% of the distribution. 

 
 
The area closest to 0.20 in the standard normal table under column P is 0.1977. The 
corresponding z value is -0.85. As the average marks (X) are distributed as normal 
with mean 58.7 and standard deviation 15.2, the x value can be found using 
z = (x – µ)/ σ. So, x = µ + z.σ.  
          = 58.7 +(-0.85)(15.2) 
                                = 45.78 
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So, the average mark of a student that separates the bottom of the data from the top 
80% is 45.78. 
 
 

 
5.5.5 Normal Approximation to the Binomial Distribution 
 
In section 5.3, we considered the binomial distribution, and calculated the binomial 
probabilities using the formula of the binomial probability distribution function. 
When there are a large number of trials of a binomial experiment, the binomial 
probability formula can be difficult to use. For example, suppose there are 600 trials 
of binomial experiment, and we wish to compute the probability of 500 or more 
successes. For this, it would require that we compute the following probabilities. 
 
P(X ≥ 500) = P(X = 500) + P(X =501) + . . . . + P(X=600) 
 
This would be time consuming to compute by hand. In fact, there are techniques for 
approximating binomial probabilities, provided that certain conditions are met. 
 
It has been found that the number of trials n in a binomial experiment increases, then 
the probability distribution of the binomial random variable X becomes more nearly 
symmetric and bell shaped.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Normal Approximation to Binomial Distribution 
 
Let X ~ Bin(n, p) 
 
Then we say that X is approximately distributed with mean µ = n.p  and 
variance σ2 = n.p.(1 – p)when n is large.  
 
As a general rule of thumb, we use the condition n.p.(1 – p) ≥ 10 to make this 
approximation valid. 

 
Note: 
In using this approximation, we are approximating the distribution of a discrete 
random variable to a distribution of a continuous random variable. Hence, some care 
must be taken with the endpoints of the intervals involved. For example, for a 
continuous random variable, P(X = 10) = 0, but this probability may be positive for a 
discrete random variable. The following corrections for continuity have been 
suggested to improve the above approximation: 
 

(a) P(a ≤ X ≤ b) ≈ P(a – 0.5 ≤ X  ≤ b + 0.5) 
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(b) P(X ≤ b) ≈ P(X  ≤ b + 0.5) 
(c) P(a ≤ X) ≈ P(a – 0.5 ≤ X ) 

 
Example 13: 
The probability that a light bulb will fail in a year is 0.75, and light bulbs fail 
independently. If 192 bulbs are installed, what is the probability that the number 
which fail in a year lies between 140 and 150 inclusive? 
 
Solution: 
Let X be the number of light bulbs which fail in a year. Then X ~ Bin(192, 0.75), and 
so E(X) = 144, V(X) = 36.  
 
X can be approximated by X ~ N(144, 36)  because  n.p.(1 – p) = 36 ≥ 10 
 
The required probability is  P(140 ≤  X ≤  150) ≈ P(140 – 0.5 ≤  X ≤  150 + 0.5) 
by the continuity correction. 
          = P(139.5 ≤  X ≤  150.5) 
Let Z = (X - 144)/6.  Then Z ~ N(0, 1). So, 
 

 

139 .5 144 150 .5 144(139 .5 X 150 .5 ) =  
6 6

                                  =  ( 0 .75 1 .08)
                                  =  0 .8598  - 0 .2266
                                  =  0 .633

P P Z

P Z

− −⎛ ⎞≤ ≤ ≤ ≤⎜ ⎟
⎝ ⎠
− ≤ ≤  

 
 
 
 
5.5.6 The Exponential Probability Distribution 
 
The exponential random variable arises in the same situation as the Poisson: be 
careful not to confuse them! We have events which occur randomly but at a constant 
average rate of λ per unit time. The Poisson random variable, which is discrete, 
counts how many events will occur in the next unit of time. The exponential random 
variable, which is continuous, measures exactly how long from now it is until the 
next event occurs (e.g. : inter-arrival time of customers). Note that it takes non-
negative real numbers as values. 
 
A continuous random variable X assuming all non-negative values takes the 
exponential distribution with parameter α (> 0) if the p.d.f of X is given by 

   
. ,      when x >0( )

0,             elsewhere

xef x
αα −⎧⎪= ⎨

⎪⎩
 
It is usually written as  X ~ EXP(α). 
 
Mean and Variance of the Exponential Distribution 
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If X ~ EXP(α), then the expected value of X is obtained as follows. 
 

0

( ) . xE X x e dxαα
∞

−= ∫ ,  Integrating by parts and letting αe-αx dx=dv, x=u, we obtain  

u = - e-αx, du = dx. Thus 
 

0
0

1( ) .      .x xE X xe e dxα α

α

∞
∞− −⎡ ⎤= − + =⎣ ⎦ ∫  

The variance of X may be obtained by a similar integration. We find that  
E(X2)=2/α2 and therefore V(X) = E(X2)-[E(X)]2 = 1/α2. 
 
Example 14: 
Let X have an exponential distribution with a mean = 20. Find 

(a) the probability that X is less than 18. 
(b) the median of X. 

 
Solution: 
Since mean of X is 1/α = 20, the value of α = 1/20.  
So,  f(x) = (1/20).e-x/20, 0 < x < ∞ 
 

(a) 

18
/20 18/20

0

1( 18)      1   0.593
20

xP X e dx e− −< = = − =∫  

 
(b) The median, m, can be found using the cumulative distribution function, 

 

/ 20

0
-m/20

-m/20

( ) ( ) 0.5

1           =    0.5
20

            = 1 - e 0.5

            = e 0.5
       so, m = -(20).ln(0.5)
                = 13.86 

X
m

x

F m P X m

e dx−

= ≤ =

=

=

=

∫
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The Standard Normal Distribution Table 
 

The distribution tabulated is that of the normal 
distribution with mean zero and standard deviation 
1. For each value of Z, the standardized normal 
deviate, (the proportion P, of the distribution less 
than Z) is given.  For a normal distribution with 
mean µ and variance σ2 the proportion of the 
distribution less than some particular value X is 
obtained by calculating Z = ( X - µ )/ σ  and reading 
the proportion corresponding to this value of Z. 

 
Z P  Z P  Z P 

-4.00 0.00003  -1.00 0.1587  1.05 0.8531 
-3.50 0.00023  -0.95 0.1711  1.10 0.8643 
-3.00 0.0014  -0.90 0.1841  1.15 0.8749 
-2.95 0.0016  -0.85 0.1977  1.20 0.8849 
-2.90 0.0019  -0.80 0.2119  1.25 0.8944 
-2.85 0.0022  -0.75 0.2266  1.30 0.9032 
-2.80 0.0026  -0.70 0.2420  1.35 0.9115 
-2.75 0.0030  -0.65 0.2578  1.40 0.9192 
-2.70 0.0035  -0.60 0.2743  1.45 0.9265 
-2.65 0.0040  -0.55 0.2912  1.50 0.9332 
-2.60 0.0047  -0.50 0.3085  1.55 0.9394 
-2.55 0.0054  -0.45 0.3264  1.60 0.9452 
-2.50 0.0062  -0.40 0.3446  1.65 0.9505 
-2.45 0.0071  -0.35 0.3632  1.70 0.9554 
-2.40 0.0082  -0.30 0.3821  1.75 0.9599 
-2.35 0.0094  -0.25 0.4013  1.80 0.9641 
-2.30 0.0107  -0.20 0.4207  1.85 0.9678 
-2.25 0.0122  -0.15 0.4404  1.90 0.9713 
-2.20 0.0139  -0.10 0.4602  1.95 0.9744 
-2.15 0.0158  -0.05 0.4801  2.00 0.9772 
-2.10 0.0179   0.00 0.5000  2.05 0.9798 
-2.05 0.0202   0.05 0.5199  2.10 0.9821 
-2.00 0.0228   0.10 0.5398  2.15 0.9842 
-1.95 0.0256   0.15 0.5596  2.20 0.9861 
-1.90 0.0287   0.20 0.5793  2.25 0.9878 
-1.85 0.0322   0.25 0.5987  2.30 0.9893 
-1.80 0.0359   0.30 0.6179  2.35 0.9906 
-1.75 0.0401   0.35 0.6368  2.40 0.9918 
-1.70 0.0446   0.40 0.6554  2.45 0.9929 
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-1.65 0.0495   0.45 0.6736  2.50 0.9938 
-1.60 0.0548   0.50 0.6915  2.55 0.9946 
-1.55 0.0606   0.55 0.7088  2.60 0.9953 
-1.50 0.0668   0.60 0.7257  2.65 0.9960 
-1.45 0.0735   0.65 0.7422  2.70 0.9965 
-1.40 0.0808   0.70 0.7580  2.75 0.9970 
-1.35 0.0885   0.75 0.7734  2.80 0.9974 
-1.30 0.0968   0.80 0.7881  2.85 0.9978 
-1.25 0.1056   0.85 0.8023  2.90 0.9981 
-1.20 0.1151   0.90 0.8159  2.95 0.9984 
-1.15 0.1251   0.95 0.8289  3.00 0.9986 
-1.10 0.1357   1.00 0.8413  3.50 0.99977 
-1.05 0.1469      4.00 0.99997 
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