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Integration or antidifferentiation is the reverse process of differentiation. It is the process 
of finding an original function when the derivative of the function is given.  
 
1. Antiderivative and the Indefinite Integral (Ref 1: pg. 630-632, Ref 2: pg. 

196-198) 
 

Definition:  
A function F(x) is called an antiderivative of the function f(x) if )(xF ′ = f(x) for all x in 
the domain of f(x). 

 
Example: 
(1) If f(x) = 3x2 then F(x) = x3 is an antiderivative of f(x) since )(xF ′ = 3x2 = f(x). 
(2) If f(x) = cos x then F(x) = sin x is an antiderivative of f(x) since = cos x = f(x). )(xF ′

(3) If f(x) = x4  then F(x) = 
5

5x  is an antiderivative of f(x) since )(xF ′ = x4 = f(x). 

 
Example: 
Consider the following functions and their derivatives. 
 
(i)   If F1(x) = x3, then = 3x)(1 xF ′ 2 

(ii)  If F2(x) = x3 + 5, then = 3x)(2 xF ′ 2

(iii) If F3(x) = x3 - 10, then = 3x)(3 xF ′ 2

(iv)  If F4(x) = x3 + 2 , then = 3x)(4 xF ′ 2

 
Therefore, if f(x) = 3x2, then F1(x) = x3, F2(x) = x3 + 5, F3(x) = x3 – 10 and F4(x) = x3+ 2  
are all antiderivatives of f(x) = 3x2. 
 
We see from the above example, that the antiderivative of a function is not unique. If F(x) 
is an antiderivative of f(x), then F(x) + c (where c is a constant) is also an antiderivative 

of f(x), since )(])([ xFcxF
dx
d ′=+ . 

 
Theorem:  
If F1(x) and F2(x) are antiderivatives of a function f, then F1(x) - F2(x) = C, where C is a 
constant. 

 1



 
It follows from the above theorem that if F1(x) is an antiderivative of a function f(x), then 
every other antiderivative of f(x) is given by F(x) = F1(x) + C, where C is an arbitrary 
constant. C is called the constant of integration. 
 
We denote the process of integration by the symbol ∫ which is called an integral sign. 
The expression  denotes any antiderivative of f(x); i.e., if = f(x) then 

 = F(x) + C.  is also called the indefinite integral of f(x). In this 
notation, f(x) is called the integrand of the indefinite integral and the x in dx is the 
variable of integration.  is read as ‘the integral of f(x) with respect to x’. 

∫ dxxf )( )(xF ′

∫ dxxf )( ∫ dxxf )(

∫ dxxf )(
 

Since differentiation is the inverse operation of integration, 

∫ = )(])([ xfdxxf
dx
d  

 
And since integration is the inverse operation of differentiation, 

∫ +=′ Cxfdxxf )()( . 
 
Rules of Integration 
 

(1) ∫  (k a constant)   [since += Ckxkdx kCkx
dx
d

=+ )( ] 

(2) ∫   (k a constant) ∫= dxxfkdxxkf )()(

(3)  ∫ ∫ ∫+=+ dxxgdxxfdxxgxf )()()]()([  

(4)  C
r
xdxx

r
r +

+
=∫

+

1

1

,     ( 1−≠r )     [since r
r

xC
r
x

dx
d

=+
+

+

)
1

(
1

] 

(5)  ∫ +
+

=′
+

C
r
xgdxxgxg

r
r

1
))(()())((

1

,     ( 1−≠r )   

       [since )())((]
1

))(([
1

xgxgC
r
xg

dx
d r

r

′=+
+

+

] 

 
Example: 
 
(1)  Cxdx +=∫ 33   by applying (1) above 

(2)  CxCxdxx +=+=∫ 3
2

6
44

66
5   by applying (2) and (4) above 

(3)  CxxCxxdxx ++=++=+∫ 10
3

410

2
3

2]102[
2
3

2
3

2
1

 by applying (1), (2), (3) and 
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        (4) above 

(4) Cxdxx +
+

=+∫ 3
)14()14(4

3
2  by applying (5) above 

 
2. Table of Indefinite Integrals (Ref 1: pg. 630-631, Ref 2: pg. 198, 225-228, 

234 – 237) 
 

1. ( 1
1

1

−≠+
+

=
+

∫ rC
r
xdxx

r
r )          since        r

r

xC
r
x

dx
d

=+
+

+

)
1

(
1

 

2. ( 0ln1
≠+=∫ xCxdx )

x
               since       

x
Cx

dx
d 1)(ln =+  

    Cxgdx
xg
xg

+=
′

∫ )(ln
)(
)(   

3. )1,0(
ln

≠<+=∫ aaC
a

adxa
x

x      since       x
x

aC
a

a
dx
d

=+ )
ln

(     

4.                                  since       Cedxe xx +=∫ xx eCe
dx
d

=+ )(  

5. ∫                      since       +−= Cxxdx cossin xCx
dx
d sin)cos( =+−  

6. ∫                          since       += Cxxdx sincos xCx
dx
d cos)(sin =+  

7.                        since       Cxdxx +=∫ tansec2 xCx
dx
d 2sec)(tan =+  

     ,...)2,1,0,
2

( ±±=+≠ kkx ππ      

8. ∫                 since        +−= Cxxdxec cotcos 2 xecCx
dx
d 2cos)cot( =+−    

     ,...)2,1,0,( ±±=≠ kkx π     

9. ∫ +−= Cxxdx coslntan   ,...)2,1,0,
2

( ±±=+≠ kkx ππ  

10. ∫ += Cxxdx sinlncot     ,...)2,1,0,( ±±=≠ kkx π  

11. ∫ +−= Cxecxecxdx cotcoslncos  

12. ∫ ++= Cxxxdx tanseclnsec  

13. C
a
xC

a
x

xa
dx

+−=+=
−

−−∫ 11

22
cossin      ( ax < ) 

14. C
a
x

a
C

a
x

axa
dx

+−=+=
+

−−∫ 11
22 cot1tan1    (a > 0) 

15. C
a
x

aaxx
dx

+=
−

−∫ 1

22
sec1    (x > a > 0) 

 3



 
3. The Substitution Method (Ref 1: pg. 637-638, 640, Ref 2: pg. 198, 289-294) 

 
 

∫ ∫=′ duufdxxgxgf )()())((  
        where u is replaced by g(x) after the right-hand side is evaluated. 
 

 
Justification:  

Let u = g(x). Then )(xg
dx
du ′=  . 

 

∫ duuf
dx
d )(( ) = ∫ dx

duduuf
du
d ))((       by applying the chain rule 

  = 
dx
duuf ).(  since differentiation is the reverse of integration 

=  )())(( xgxgf ′
 
Therefore,  by the definition of the antiderivative. ∫ ∫ ′= dxxgxgfduuf )())(()(
 
Example: 
 

(1) ∫  = xdxtan dx
x
x

∫ cos
sin .  

       Let u = cos x. Then x
dx
du sin−=  

       Therefore, du
u

dx
x
x

∫ ∫
−

=
1

cos
sin   by substitution 

       ∫ +−=− Cudu
u

ln1   

        Therefore,   = ∫ xdxtan Cx +− cosln  by substituting back u = cos x. 
 

(2)  dx
x
x

∫ + 52 3

2

 

         

       Let u = 2x3 + 5.  Then 26x
dx
du

= . Therefore, 2

6
1 x

dx
du

=  

       Thus dx
x
x

∫ + 52 3

2

 = CxCudu
u

++=+=∫ 52ln
6
1ln

6
11

6
1 3  

 
(3)  ∫ + xdxx sin)4(cos 3
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       Let .  Then 4cos += xu x
dx
du sin−= . 

       Therefore,  = ∫ + xdxx sin)4(cos 3 CxCuduu +
+

−=+−=−∫ 4
)4(cos

4

44
3  

 

(4) ∫ −
dx

ax
1  where a is a constant. 

Let u = x – a.  Then 1=
dx
du . 

∫ ∫ +−=+==
−

CaxCudu
u

dx
ax

lnln11 . 

 
 
4. Integration by Parts  (Ref 1: pg. 649-651, Ref 2: pg. 281-283) 
 
 

∫ ∫ ′−=′ dxuvuvdxvu )()(  
 

 
Justification: 

       )()()()())()(( xvxuxvxuxvxu ′+′=′

Therefore,  dxxvxuxvxudxxvxu )]()()()([))()(( ′+′=′ ∫∫
                                           = dxxvxudxxvxu ∫∫ ′+′ )()()()(  

i.e.,  ∫ ∫ ′+′= dxxvxudxxuxvxvxu )()()()()()(

Therefore, ∫ ∫ ′−=′ dxxuxvxvxudxxvxu )()()()()()(  
 
Another way of writing this is: 
   
 

∫ ∫−= vduuvudv   
 

 
Justification: 

  by the chain rule.  ∫ ∫=
dx
dvudv

dv
dudv

dx
d ].[][

Also, ∫ = uudv
dv
d  and hence ∫ ′= vu

dx
dvudv

dv
d .][ .   

Thus ∫ ∫ ′== vu
dx
dvudv

dv
dudv

dx
d ][][ . 

Hence .   ∫ ∫ ′= dxvuudv
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Similarly  ∫ ∫ ′= dxuvvdu

Therefore,  may also be written as ∫ ∫ ′−=′ dxuvuvdxvu ∫ ∫−= vduuvudv  
 
This technique enables us to replace the ‘harder’ integration ∫udv  by an ‘easier’ 

integration ∫ . vdu
 
Example: 
 
(1) ∫  dxxe x2

      Let u = x and dv = e2xdx. 

      Then du = dx  and v = ∫∫ ==
2

2
2

x
x edxedv   

       Therefore, by applying ∫ ∫−= vduuvudv  we obtain 

       ∫  = dxxe x2 ∫ +−=− Cexedxeex
xxxx

4222

2222

 

 
(2) ∫  xdxln
      Let u = ln x and let dv = dx. 

      Then 
xdx

du 1
=   and v = x 

       Therefore,  = xlnx  - ∫ xdxln ∫∫ +−=−= Cxxxdxxxdx
x

x lnln1.  

 
(3) ∫ ∫  = xdxxxdx coscoscos 23

       Let u = cos2x  and dv = cos xdx 

       Then xx
dx
du sincos2−=  and ∫∫ === xxdxdvv sincos  

       Therefore,   ∫ ∫= xdxxxdx coscoscos 23

                                           = ∫ −− dxxxxxx )sincos2(sinsincos 2  

          = ∫ −+ dxxxxx )cos1(cos2sincos 22  

                                           = ∫ ∫−+ xdxxdxxx 32 cos2cos2sincos  

       Therefore, ∫∫ += xdxxxxdx cos2sincoscos3 23  

        Thus Cxxxxdx ++=∫ sin
3
2sincos

3
1cos 23 . 

  
        Note: The integral ∫∫∫ −== xdxxxdxxxdx cos)sin1(coscoscos 223  may also be  
        found by making the substitution xu sin=  
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5. Partial Fractions (Ref 2: pg. 304-309) 
 

A function of the form 
)(
)(

xD
xN  where N(x) and D(x) are polynomials is called a rational 

function. N(x) is the numerator and D(x) is the denominator. Suppose the degree of 

N(x) is n and the degree of D(x) is m. If n < m, then 
)(
)(

xD
xN  is said to be a proper fraction. 

If ,  mn ≥
)(
)(

xD
xN  is called an improper fraction. 

 
An improper fraction can be expressed as the sum of a polynomial and a proper fraction; 
for, if , we can divide the numerator by the denominator, obtaining as quotient a 
polynomial Q(x) of degree n – m, and as remainder a polynomial R(x) of degree not 
greater than m – 1. 

mn ≥

)(
)(

xD
xN = Q(x) + 

)(
)(

xD
xR . 

 
A polynomial is said to be irreducible, if it cannot be written as a product of two 
polynomials of lower degree. Any linear polynomial baxxf +=)(  is automatically 
irreducible. 
 
If we consider a quadratic , this is irreducible if and only if 

. 
cbxaxxg ++= 2)(

042 <− acb
 
Theorem: 
Any polynomial D(x) can be written as a product of linear factors and irreducible 
quadratic factors. 
 
 
Partial Fractions 

A rational function of the form 
))(( bxax

dcx
−−

+  where ba ≠  may be expressed as the sum 

of two fractions of the form 
)( ax

A
−

and 
)( bx

B
−

. These two fractions are called the 

partial fractions corresponding to the given rational function. 
 

We determine the constants A and B as follows: 
 

Suppose 
))(( bxax

dcx
−−

+  = 
)( ax

A
−

+ 
)( bx

B
−

  where ba ≠ . 

Then 
))(( bxax

dcx
−−

+ =
))((

)()(
bxax

axBbxA
−−

−+− . 
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Therefore, )()( axBbxAdcx −+−=+  

Substituting x = a we obtain 
ba
dcaA

−
+

=  

Substituting x = b we obtain 
ab
dcbB

−
+

= . 

Therefore, 
))(( bxax

dcx
−−

+  = 
))(())(( bxab

dcb
axba

dca
−−

+
+

−−
+  

 
We may also obtain the constants by equating the coefficients on the left and right sides 
of  . )()( axBbxAdcx −+−=+
x:  c = A + B 
constant d = -bA – aB 
and solving these simultaneous equations for A and B 
 
We give below by examples, the method of finding the partial fractions of rational 
functions that are proper fractions. 
 
Case I: The denominator D(x) is a product of distinct linear factors 

. )()....,(),( 21 raxaxax −−−
 

Then 
)(
)(

xD
xN  =

)(
.....

)()())...()((
)(

2

2

1

1

21 r

r

r ax
A

ax
A

ax
A

axaxax
xN

−
++

−
+

−
=

−−−
 

 

Example: 
)3)(2)(1(

12
−−−

+
xxx

x  

Let 
)3)(2)(1(

12
−−−

+
xxx

x =
)3()2()1( −

+
−

+
− x

C
x

B
x

A . 

 

Then 
)3)(2)(1(

12
−−−

+
xxx

x =
)3)(2)(1(

)2)(1()3)(1()3)(2(
−−−

−−+−−+−−
xxx

xxCxxBxxA . 

 
Therefore, )2)(1()3)(1()3)(2(12 −−+−−+−−=+ xxCxxBxxAx . 

Substituting x = 1 we obtain 3 = A(-1)(-2). Therefore, 
2
3

=A . 

Substituting x = 2 we obtain 5 = B(1)(-1). Therefore, 5−=B . 

Substituting x = 3 we obtain 7 = C(2)(1). Therefore, 
2
7

=C  . 

Thus 
)3)(2)(1(

12
−−−

+
xxx

x =
)3(2

7
)2(

5
)1(2

3
−

+
−

−
− xxx
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Case II: The denominator D(x) = (x – a)k 

 

Then 
)(
)(

xD
xN = k

k

ax
A

ax
A

ax
A

)(
....

)()( 2
21

−
++

−
+

−
 . 

 

Example: 3)3(
1

+
−

x
x  

Let 3)3(
1

+
−

x
x  = 32 )3()3()3( +

+
+

+
+ x

C
x

B
x

A  

Then  CxBxAx ++++=− )3()3(1 2

Substituting x = -3 we obtain -4 = C 
Equating the coefficient of x2 we obtain 0 = A 
Equating the coefficient of x we obtain 1 = 6A + B.  Since A = 0 we obtain B = 1. 

Thus 3)3(
1

+
−

x
x  = 32 )3(

4
)3(

1
+

−
+ xx

 

 
Case III: The denominator D(x) is a product of distinct irreducible 
quadratics ( . )(),....,(), 2

22
2

11
2

kk CxBxCxBxCxBx ++++++

Then 
)(
)(

xD
xN =

kk

kk

CxBx
QxP

CxBx
QxP

CxBx
QxP

++
+

++
++

+
+

++
+

2
22

2
22

11
2

11 ....  

 

Example: 
)2)(1(

12
22 ++

−
xx

x  

Let 
21)2)(1(

12
2222 +
+

+
+
+

=
++

−
x

EDx
x

BAx
xx

x . 

Then  )1)(()2)((12 22 +++++=− xEDxxBAxx
Substituting x = 0 we obtain -1 = 2B + E ------------(i) 
Equating the coefficient of x3 we obtain 0 = A + D. i.e., D = -A -----------------(ii) 
Equating the coefficient of x2 we obtain 0 = B + E.  Thus B = -E ---------------(iii) 
Substituting this into (i) we obtain E = 1 and hence B = -1 
Equating the coefficient of x we obtain 2 = 2A + D. 
Substituting for D from (ii) we obtain A = 2 and therefore D = -2 

Thus 
)2)(1(

12
22 ++

−
xx

x = 
2
12

1
12

22 +
+−

+
+
−

x
x

x
x  

 
Case IV: The denominator D(x) =  where  is irreducible. kcbxx )( 2 ++ cbxx ++2

Then = k
kk

cbxx
QxP

cbxx
QxP

cbxx
QxP

)(
....

)( 222
22

2
11

++
+

++
++

+
+

++
+

 
)(
)(

xD
xN
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Example: 22

3

)2( +x
x  

Let 22222

3

)2()2()2( +
+

+
+
+

=
+ x

EDx
x

BAx
x

x . 

Then  EDxxBAxx ++++= )2)(( 23

Substituting x = 0  we obtain 0 = B + E. Therefore, B = -E. 
Equating the coefficient of x3 we obtain 1 = A. 
Equating the coefficient of x2 we obtain 0 = B. Thus E = 0. 
Equating the coefficient of x we obtain 0 = 2A + D.  Therefore, D = -2. 

Therefore, 22222

3

)2(
2

)2()2( +
−

+
=

+ x
x

x
x

x
x  

 
Case V: D(x) is a combination of the above cases.  Then, linear factors are handled as in 
cases I and II and quadratic factors are handled as in cases III and IV. 
 

Example: 
)1()1)(1(

2
22

2

+−+
−

xxx
xx  

Let 
1)1(11)1()1)(1(

2
2222

2

+
+

+
−

+
−

+
+

=
+−+

−
x

EDx
x

C
x

B
x

A
xxx

xx . 

Then 
222222 )1)(1)(()1)(1()1)(1)(1()1()1(2 −+++++++−+++−=− xxEDxxxCxxxBxxAxx  

Substituting x = 1 we obtain -1 = 4C. Therefore, C = 
4
1

−  

Substituting x = -1 we obtain 3 = 8A. Therefore, A = 
8
3  

Equating the coefficient of x4 we obtain 0 = A + B + D. Therefore, B + D = 
8
3

−  ------- (i) 

Equating the coefficient of x3 we obtain 0 =-2A + C - D + E  --------(ii) 
Substituting x = 0 we obtain 0 = A – B + C + E --------(iii) 
Subtracting (ii) from (iii) we obtain 
0 = 3A – B + D --------(iv) 

Adding (i) and (iv) we obtain DA 23
8
3

+=− . Thus 
4
3)

8
9

8
3(

2
1

−=−−=D .   

Therefore B = 
8
3

4
3

8
3

=+− . 

Equating the coefficient of x2 we obtain 1 = 2A + C – D – E --------(v) 

Adding (ii) to (v) we obtain 1 = 2C – 2D. Thus C = 
4
1)

2
31(

2
1

−=− . 

Therefore by (iii) we obtain E = -A + B – C = -
4
1

4
1

8
3

8
3

=++  
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Therefore 
1

4
1

4
3

)1(
4
1

1
8
3

1
8
3

)1()1)(1(
2

2222

2

+

+−
+

−

−
+

−
+

+
=

+−+
−

x

x

xxxxxx
xx  

 

                                                     = 
)1(4

13
)1(4

1
)1(8

3
)1(8

3
22 +
+−

+
−

−
−

+
+ x

x
xxx

 

 
 
6. Integration by Partial Fractions (Ref 1: pg. 657, Ref 2: pg. 304-309) 
 
We resolve the rational function 

)(
)(

xD
xN  into partial fractions when we wish to determine 

∫ dx
xD
xN
)(
)(  where 

)(
)(

xD
xN  is a proper fraction. 

 
Example: 

 

(1) dx
xxx

x
∫ −−−

+
)3)(2)(1(

12  

     
       From the previous section we have  

      
)3)(2)(1(

12
−−−

+
xxx

x  = 
)3(2

7
)2(

5
)1(2

3
−

+
−

−
− xxx

 

 
       Therefore,  

      dx
xxx

x
∫ −−−

+
)3)(2)(1(

12  = dx
xxx

]
)3(2

7
)2(

5
)1(2

3[∫ −
+

−
−

−
 

                                           

                                     = ∫ ∫∫ −
+

−
−

−
dx

x
dx

x
dx

x )3(
1

2
7

)2(
15

)1(
1

2
3  

 

               = Cxxx +−+−−− 3ln
2
72ln51ln

2
3  

 

(2) dx
x
x

∫ +
−

3)3(
1  

       From the previous section we have 3)3(
1

+
−

x
x = 32 )3(

4
)3(

1
+

−
+ xx

 

       Therefore,  

      dx
x
x

∫ +
−

3)3(
1  = dx

xx
]

)3(
4

)3(
1[ 32 +

−
+∫  
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                  = ∫ ∫ −− +−+ dxxdxx 32 )3(4)3(  

      = C
xx

+
+

+
+

− 2)3(
2

)3(
1  

 

(3) ∫ ++
− dx
xx

x
)2)(1(

12
22  

       From the previous section we have  

       
)2)(1(

12
22 ++

−
xx

x = 
2
12

1
12

22 +
+−

+
+
−

x
x

x
x  

       Therefore, 

      ∫ ++
− dx
xx

x
)2)(1(

12
22 = ∫ +

+−
+

+
− dx

x
x

x
x ]

2
12

1
12[ 22  

       = ∫ ∫ +
+−

+
+
− dx

x
xdx

x
x

2
12

1
12

22  

        = dx
x

dx
x

xdx
x

dx
x

x
∫ ∫∫ ∫ +

+
+

−
+

−
+ 22222 )2(

1
2

2
1

1
1

2  

        = Cxxxx +++−−+ −−

2
tan

2
1)2ln(tan)1ln( 1212  

(4) ∫ +−+
− dx

xxx
xx

)1()1)(1(
2

22

2

 

       From the previous section we have 

       
)1()1)(1(

2
22

2

+−+
−

xxx
xx = 

)1(4
13

)1(4
1

)1(8
3

)1(8
3

22 +
+−

+
−

−
−

+
+ x

x
xxx

 

        Therefore,  

       ∫ +−+
− dx

xxx
xx

)1()1)(1(
2

22

2

    

           = ∫∫ ∫ ∫ +
+−

+
−

−
−

+
+

dx
x

xdx
x

dx
x

dx
x )1(4

13
)1(4

1
)1(8

3
)1(8

3
22  

           = ∫ ∫ ∫ ∫ ∫ +
+

+
−−−

−
+

+
− dx

x
dx

x
xdxxdx

x
dx

x 1
1

4
1

1
2

8
3)1(

4
1

1
1

8
3

1
1

8
3

22
2  

           = Cxx
x

xx +++−
−

+−++ −12 tan
4
1)1ln(

8
3

)1(4
11ln

8
31ln

8
3  

 
 
 
 
 

7. The Definite Integral and the Area Under a Curve (Ref 1: pg. 635-636, 
Ref 2: pg. 206-209, 217-218, 257-260) 
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The Greek capital letter Σ denotes repeated addition. If f is a function defined on the 
integers, and if n and k are integers such that n ≥ k, then  

∑
=

++++=
n

kj

nfkfkfjf )(....)1()()( . 

 
Area under a curve: 

 
Suppose f  is function such that  for all x in the interval [a, b]. Then the graph of 
f lies on or above the x-axis.   

0)( ≥xf

Let  be points such that nxxx ,......,, 10 bxxxa n =<<<= .....10 . 
Let the length of the subintervals [x0, x1], [x1, x2], …..,[xn-1, xn] be denoted by 

 respectively.  Then for 1 ≤ k ≤ n, ∆xxx n∆∆∆ ,,........., 21 kx = xk – xk-1. 
 

Let R be the region bounded by the graph of the function, the x-axis, x = a and x = b.  
This region may be divided into n strips by drawing vertical line segments x = xk from the 
x-axis up to the graph. If we denote the area of the kth  strip by ∆kA, then the total area of 

the region R is given by . ∑
=

∆=
n

k
k AA

1

 
 

y  
 Figure 1  
 
 
 

∆1A  
 
 ∆2A 
 
 
 ∆nA 
 
 

x  x1 xn-1a xk b  
 
 
 
 
 
We may approximate the area ∆kA by selecting a point xk* in the interval [xk-1, xk] and 
computing the area of the rectangle with height f(xk*) and width ∆kx (Figure 2). 
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y 

Figure 2  
 
 
 
 
 
 
 
 
 
 
 
 x x1 xn-1a x1* xk* xn* xk b  
 
 
 
Then  

nn

n

k
kk xxfxxfxxfxxf ∆++∆+∆=∆∑

=

)(....)()()( *
2

*
21

*
1

1

*  ----------------- (1) 

is an approximation of the total area A of the region R. We obtain better approximations 
by increasing the number of subintervals and reducing the lengths of the subintervals. 
If the limit of this sum exists as the number of subintervals approaches infinity and the 
maximum length of the subintervals approaches zero, then this limit equals the area A 
under the curve and is called the definite integral of f from a to b and is denoted by 

.  ∫
b

a

dxxf )(

 

In the notation , b is called the upper limit and a is called the lower limit of the 

definite integral.  

∫
b

a

dxxf )(

 
For any function f (not necessarily non-negative), defined on the interval [a, b], sums of 
the form (1) above may be formed (without using the notion of area).  If these sums tend 
to a finite limit as n, the number of subintervals tends to infinity, and the maximum of the 

lengths ∆kx tends to 0, then the limit is denoted by  and is called the definite 

integral of f on [a, b].  If  exists, we say that f is integrable on [a, b]. 

∫
b

a

dxxf )(

∫
b

a

dxxf )(

Result: 
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If f is a function such that  and integrable on [a, b], then the area A of the region 
bounded by the curve y = f(x), the x-axis and the lines x = a and x = b is given by             

A = - . 

0)( ≤xf

∫
b

a

dxxf )(

 
Theorem:  

If the function f is continuous on [a, b], then  exists.          ∫
b

a

dxxf )(

Result: 

If f is a function which is continuous on the interval [a, b], then  is equal to the 

area above the x-axis bounded by the graph of y = f(x) from a to b minus the area below 
the x-axis bounded by the graph of y = f(x) from a to b. 

∫
b

a

dxxf )(

 
Properties of the definite integral 
 

(1)  where c is a constant. ∫ ∫=
b

a

b

a

dxxfcdxxcf )()(

(2)  ∫ ∫ +=+
b

a

b

a

b

a

dxxgdxxfdxxgxf )()())()(( ∫

(3) ∫ ∫  where a < c < b ∫+=
b

a

c

a

b

c

dxxfdxxfdxxf )()()(

(4)  0)( =∫
a

a

dxxf

(5) ∫ ∫   −=
a

b

b

a

dxxfdxxf )()(

 
The Fundamental Theorem of Calculus 
 
Let f be continuous on [a, b] and let F(x) = ∫ dxxf )( ; i.e., F is an antiderivative of f. Then 

 = F(b) – F(a). ∫
b

a

dxxf )(

 
The fundamental theorem of calculus provides a simple way of computing the definite 

integral  when we can find an antiderivative of f. F(b) – F(a) is often 

abbreviated as . 

∫
b

a

dxxf )(

b
axF )](

 15



 
Example: 
 

(1) 3
2

23

2

3

2

2

)]1ln2
2

()
1

21(
1
1

−++=
−

++=
−
+

∫∫ xxxdx
x

xdx
x

x  

                                                       = )1ln22
2
4()2ln23

2
9( ++−++  

                                                       = 3.5 + 2ln2 
 

(2) )
6

(
3

1)0tan
3

1(tan
3

1]
3

tan
3

1
3

1 11
1

0

1
0

1
2

π
=−==

+
−−−∫

xdx
x

= 
36

π  

 
 
 
(3) Find the area bounded by the graph of y = -x and the x-axis between x = -2 and x = 2. 

       Area =   ∫ ∫
−

−−−
0

2

2

0

)()( dxxdxx
y 

Figure 3 
                = 2

0

2
0

2

2

)]
2

()]
2

( xx −
−

−
−  

y =-x 

                = [0 - ]0
2

)2([]
2

)2( 22

−
−

−
−−  2 

                = 2 + 2 = 4 
 x 

2 
     Note: 0

2
)2(

2
)2(]

2

22
2

2

22

2

=
−−

−
−

=
−

=− −
−
∫

xxdx  
-2 

-2 
 
 
 
Area between two curves 
 
Suppose f and g are continuous functions such that )()( xfxg ≤  for . Then the 
curve y = f(x) lies on or above the curve y = g(x) between x = a and x = b. The area A of 
the region between the two curves lying between x = a and x = b is given by 

bxa ≤≤

A =  ∫ −
b

a

dxxgxf ))()((

 
Example: 
Find the area between the graphs of y = x2 and y = -x in the interval [-1, 1] 
 
Area between the two curves: 

y Figure 4 
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y =x2 



A =  dxxxdxxx ))(()(
1

0

2
0

1

2 ∫∫ −−+−−
−

    = 1
0

23
0

1

32

)]
23

()]
32

( xxxx
++−

−
−  

    = ]
2
1

3
1[)]

3
1

2
1(0[ +++−−  

    = 1 
 
 
 
 
 
 
 
 
Change of variable in a definite integral 
 
In computing a definite integral using the fundamental theorem of calculus, an 
antiderivative  is required. In section 3 we saw that sometimes it helps to 

substitute a new variable u to find
∫ dxxf )(

∫ dxxf )( . When a substitution is done to find 

, the limits of integration must be replaced by the corresponding values of u. ∫
b

a

dxxf )(

 
Example: 

(1)  xdxx cossin
4

0

3∫
π

       Let u = sin x.  Then x
dx
du cos= .  

       When x = 0, u = sin 0 = 0, and when x = 
4
π ,  u = 

2
1 . 

       Therefore, xdxx cossin
4

0

3∫
π

 = 
16
1]

4
2

1

0

42
1

0

3 ==∫
uduu  

 17


