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Differentiation 
 

References: (1) Business Mathematics by Qazi Zameeruddin, V. K. Khanna and S.K. Bhambri                   
  (2) Schaum’s Outlines, Calculus by Frank Ayres, Jr. and Elliot Mendelson (4th  
                           Edition) 

 
1. Functions 

 
Example:  

Consider the formula for the volume of a sphere, 3

3
4 rV π= . 

In this formula, the value of π remains unchanged in the varying cases to which the 

formula applies. Thus π  represents a constant. 
3
4  is also a constant in the above 

formula. For different spheres, r and V take different values; with V depending on 
the value of r. V and r represent variables. Since the value of V depends on the value 
of r, V is called the dependent variable, and r is called the independent variable. 

 
When two quantities are related as in the above example, the dependent variable is 
said to be a function of the independent variable. 

 
Thus, in the above example, the volume of a sphere is a function of the radius of the 
sphere. 

 
Definition 1: 
A function is a rule that assigns to each value of the independent variable a unique 
value of the dependent variable.  
 
The set of values that the independent variable takes is called the domain of the 
function. If f denotes the function and x the independent variable, f(x) denotes the 
value of f at x. The range of f is the set of all possible values of f(x) as x varies 
throughout the domain. If y is a function of the independent variable x, we write         
y = f(x) to indicate the dependence of y on x. 
 
Definition 2: 
The composite function fog of the functions g and f is the function defined by  
(fog)(x) = f(g(x)). 
 
 

2. Limits and Continuity [Ref 1: pg. 545-548, 551-552; Ref 2: pg. 61-63, 71 -73] 
 

The concept of limit which is basic to the study of calculus, helps us to describe the 
behaviour of a function f when the independent variable x takes values very close to a 
particular value a. 
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Example:  

Consider the function f(x) = 
1

22 2

−
−

x
x ,  (x ≠ 1). Let us consider what happens to the 

function as x approaches the value 1. 
 

x < 1 f(x) x > 1 f(x) 
0.5 3 1.5 5 
0.9 3.8 1.1 4.2 
0.99 3.98 1.01 4.02 
0.999 3.998 1.001 4.002 
0.9999 3.9998 1.0001 4.0002 
0.99999 3.99998 1.00001 4.00002 
0.999999 3.999998 

 

1.000001 4.000002 
 
We see that as x approaches 1 (from values less than 1 as well as from values greater 

than 1), f(x) approaches 4.  We say that the limit of the function f(x) = 
1

22 2

−
−

x
x  as x 

approaches 1 is 4 and we write this as 4
1

22lim
2

1
=

−
−

→ x
x

x
. 

 
We note that the limit of the function as x approaches 1 exists, although the function 
itself is not defined at the point x = 1.  
 
 
Now consider the following 2 tables. 
 

x < 1 1- x f(x) 4 - f(x) 
0.9 0.1 3.8 0.2 
0.99 0.01 3.98 0.02 
0.999 0.001 3.998 0.002 
0.9999 0.0001 3.9998 0.0002 
0.99999 0.00001 3.99998 0.00002 
0.999999 0.000001 3.999998 0.000002 

 
x > 1 x - 1  f(x) f(x) - 4 

1.1 0.1 4.2 0.2 
1.01 0.01 4.02 0.02 
1.001 0.001 4.002 0.002 
1.0001 0.0001 4.0002 0.0002 
1.00001 0.00001 4.00002 0.00002 
1.000001 0.000001 4.000002 0.000002 

 
We see from the 2nd and 4th columns of these tables that the closer x is to 1, the closer 
f(x) is to 4. For example, if x differs from 1 by 0.0001, then f(x) differs from 4 by 
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0.0002, and if x differs from 1 by 0.000001, then f(x) differs from 4 by 0.000002. We 
see that we can make f(x) as close to 4 as we please by taking x close enough to 1; 
i.e., we can make the absolute value of the difference between f(x) and 4 as small as 
we please by making the difference between x and 1 small enough. Another way of 
saying this is: given any positive number ε, there is a positive number δ such that 

ε<− 4)(xf  whenever 0 < δ<−1x .  
 
 

Let f be a function of x.  We say that the limit of f(x) as x approaches a is L if f(x) gets 
arbitrarily close to L as x gets arbitrarily close to a, and we write this as Lxf

ax
=

→
)(lim . 

We say that the limit of f(x) as x approaches a  from the left is L if f(x) gets arbitrarily 
close to L as x gets arbitrarily close to a from values less than a, and we write this as 

Lxf
ax

=
−→

)(lim . 

We say that the limit of f(x) as x approaches a  from the right is L if f(x) gets 
arbitrarily close to L as x gets arbitrarily close to a from values greater than a, and we 
write this as Lxf

ax
=

+→
)(lim . 

 
Definition 3:  
 

(1) Lxf
ax

=
→

)(lim  if and only if given any positive number ε, there exists a  

corresponding positive number δ  such that ε<− Lxf )(  whenever 

δ<−< ax0 . 
(2) Lxf

ax
=

−→
)(lim  if and only if given any positive number ε, there exists a 

corresponding positive number δ  such that ε<− Lxf )(  whenever 
axa <<−δ . 

(3) Lxf
ax

=
+→

)(lim  if and only if given any positive number ε, there exists a 

corresponding positive number δ  such that ε<− Lxf )(  whenever 
δ+<< axa . 

 
 
 
The idea of definition 3(1) is that if  

Lxf
ax

=
→

)(lim , then when ε > 0 is 

selected,  δ > 0 can be found, such  
that for any point x0 in the interval  
(a - δ, a + δ) such that x0 ≠ a, f(x0)  
lies in the interval (L - ε, L + ε). 
(Figure 1) 

 
 

x 

y 

a a-δ a+δ 

L 
L - ε 

L + ε 
f(xo) 

xo 

Figure 1 

f(x) 
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Theorems: 
 
(1) Lxf

ax
=

→
)(lim  if and only if 

-
lim ( )
x a

f x L
→

=  and Lxf
ax

=
+→

)(lim . 

(2) If 1)(lim Lxf
ax

=
→

 and 2)(lim Lxf
ax

=
→

, then L1 = L2 (i.e., if the limit exists, it is  

      unique). 
 

Theorems on Limits: 
 
(1) If f (x) = c, a constant, then cxf

ax
=

→
)(lim . 

(2) Suppose Axf
ax

=
→

)(lim , Bxg
ax

=
→

)(lim  and c is a constant. Then 

(a)  cAxfcxcf
axax

==
→→

)(lim)(lim . 

(b)  BAxgxfxgxf
axaxax

±=±=±
→→→

)(lim)(lim)]()([lim . 

(c)  BAxgxfxgxf
axaxax

.)(lim).(lim)]().([lim ==
→→→

. 

(d)  0 if,
)(lim

)(lim

)(
)(lim ≠==

→

→

→
B

B
A

xg

xf

xg
xf

ax

ax

ax
. 

(e)  nn
ax

n
ax

Axfxf ==
→→

)(lim)(lim  provided n A  is defined. 

 
Example: 

(1) 
)1(

)1)(1(2lim
1

)1(2lim
1

2

1 −
+−

=
−
−

→→ x
xx

x
x

xx
 

           4)11(2]1limlim[2)1(2lim
111

=+=+=+=
→→→ xxx

xx   

 by applying 2(a), 2(b) and (1) of the theorems on limits. 
 

(2) 
)2)(4(
)2)(2(lim

4
2lim

44 +−
+−

=
−
−

→→ xx
xx

x
x

xx
 

           
4
1

2limlim

1lim

2
1lim

)2)(4(
4lim

44

4

44
=

+
=

+
=

+−
−

=
→→

→

→→
xx

x

xx xxxx
x  

 by applying 2(d), (1), 2(b) and 2(e) of the theorems on limits. 
 
Definition 4: 
A function f is said to be continuous at the point xo if the following three conditions 
hold: 
(1) f(xo) is defined; 
(2) )(lim xf

oxx→
exists; 

(3) )(lim xf
oxx→

= f(xo). 
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If one or more of the above conditions fail, we say that the function is discontinuous 
at xo. 
 
We say that a function f is continuous on a set A if it is continuous at every point of 
A. 

In the above example where f(x) = 
1

22 2

−
−

x
x ,  (x ≠ 1), the function is discontinuous at  

x = 1, since f(1) is not defined. 
 
Let us redefine the function as follows: 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

≠
−
−

=
14

1
1

22

)(

2

x

x
x
x

xg  

 
       Then g is continuous at x = 1. 
 

Discontinuities of functions which may be removed by extending the function (as 
above) are called removable discontinuities. 

 
      Infinity 
 

Let f be a function defined on some interval (a, ∞). We say that the limit of f(x) as x 
approaches infinity is L, if the values of f(x) can be made arbitrarily close to L by 
taking x sufficiently large. We denote this by Lxf

x
=

∞→
)(lim . 

 
Let f be a function defined on some interval (-∞, a). We say that the limit of f(x) as x 
approaches negative infinity is L, if the values of f(x) can be made arbitrarily close to 
L by taking x sufficiently small. We denote this by Lxf

x
=

−∞→
)(lim . 

 
Definition 5: 
(1) Let f be a function defined on some interval (a, ∞). Then Lxf

x
=

∞→
)(lim  if and 

only if given any real number ε > 0 there is a corresponding real number R such 
that ε<− Lxf )(  whenever x > R. 

(2) Let f be a function defined on some interval (-∞, a). Then Lxf
x

=
−∞→

)(lim  if and 

only if given any real number ε > 0 there is a corresponding real number R such 
that ε<− Lxf )(  whenever x < R. 

 
Note: The Theorems on Limits also hold for limits at infinity; i.e., x → a in the 
theorems may be replaced by x → ∞ as well as by x → -∞. 
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Theorem:   

(1) For r a positive rational number 01lim =
∞→ rx x

 

(2) For r a positive rational number 01lim =
−∞→ rx x

 if xr is defined for all x. 

 
      Example:  

      (1) 0001lim2lim)12(lim2lim 223

2

=+=−=−=
−

−∞→−∞→−∞→−∞→ xxxxx
xx

xxxx
  

            by applying 2(b) of the theorems on limits and the above theorem. 

(2)  
4
3

004
03

1lim1lim4lim

2lim3lim
]

114

23
[lim]

14
23[lim

3

2

3

2

23

3

=
++

−
=

++

−
=

++

−
=

++
−

∞→∞→∞→

∞→∞→

∞→∞→

xx

x

xx

x
xx

xx

xxx

xx

xx
 

 by applying the theorems on limits and the above theorem. 
 
 
Let f  be a function defined on both sides of a point a. We say that the limit of f(x) as 
x approaches a is infinity, if the value of f(x) can be made arbitrarily large by taking x 
sufficiently close to a ( ax ≠ ). We denote this by ∞=

→
)(lim xf

ax
. 

 
Let f  be a function defined on both sides of a point a. We say that the limit of f(x) as 
x approaches a is negative infinity, if the value of f(x) can be made arbitrarily small 
by taking x sufficiently close to a ( ax ≠ ). We denote this by −∞=

→
)(lim xf

ax
 

 
Definition 6: 
(1) Let f  be a function defined on an open interval containing a, except possibly at a 

itself.  Then ∞=
→

)(lim xf
ax

 if and only if for every positive number M there exists 

a corresponding positive number δ such that f(x) > M whenever δ<−< ax0 . 
 
(2) Let f  be a function defined on an open interval containing a, except possibly at a 

itself.  Then −∞=
→

)(lim xf
ax

 if and only if for every negative number N there 

exists a corresponding positive number δ such that f(x) < N whenever 
δ<−< ax0 . 

 
(3) Let f  be a function defined on an open interval (a, ∞). Then ∞=

∞→
)(lim xf

x
 if and 

only if for every positive number M there exists a corresponding positive number 
R such that f(x) > M whenever x > R. 
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Note:  The definitions (1) and (2) can be extended to one-sided limits in the obvious 
way. Definitions similar to (3) can be obtained for −∞=

∞→
)(lim xf

x
, ∞=

−∞→
)(lim xf

x
 and 

−∞=
−∞→

)(lim xf
x

. 

       
        

Theorems:   

 (1) If n is a positive even integer, then ∞=
−→ nax ax )(
1lim  

 (2) If n is a positive odd integer, then ∞=
−+→ nax ax )(
1lim  and −∞=

−−→ nax ax )(
1lim  

 
Example: 

(1) +∞=
−
+

+→ 1
)1(2lim

1 x
x

x
 since the denominator approaches 0 from the positive side  

      while the numerator approaches the constant value 4 as x approaches 1 from the  
      right. 
  

(2) −∞=
−
+

−→ 1
)1(2lim

1 x
x

x
 since the denominator approaches 0 from the negative side  

      while the numerator approaches the constant value 4 as x approaches 1 from the  
      left. 

 
3. The Average Rate of Change [Ref 2: pg. 79] 

 
Definition 7: 
Let y be a function of x; say y = f(x). Suppose ∆x represents a small change in the 
value of x from x0 to x0 + ∆x, and suppose ∆y represents the corresponding change in 
the value of y. Then ∆y = f(x0 + ∆x) – f(x0). 

The ratio 
x

xfxxf
x
y

x
y

∆
−∆+

==
∆
∆ )()(

in  change
inchange 00   is called the average rate of 

change of y per unit change in x on the interval [x0, x0 + ∆x]. 
 

Example: 
Suppose that the cost (in Rupees) of producing x units of a certain item is given by 

x
xxC 2010)( +=  (x > 0). Then the average rate of change of C with respect to x as x 

changes from 4 to 5 is 9
45

)540()450(
45

)4()5(
=

−
+−+

=
−
−CC . i.e., Rs. 9 per unit on 

the interval [4, 5]. 
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4. The Derivative [Ref 1: pg. 553 – 554; Ref 2: pg. 79-80] 
 
Definition 8: 

Suppose y = f(x) and x0 is in the domain of f. Then, 
x

xfxxf
x
y

xx ∆
−∆+

=
∆
∆

→∆→∆

)()(
limlim 00

00
 

is called the instantaneous rate of change of f at x0, provided this limit exists 
finitely. 
This limit is also called the derivative of f at x0 and is denoted by f ′(xo). 
 
The value of the derivative of a function f  at an arbitrary point x in the domain of the 

function is given by
x

xfxxf
x ∆

−∆+
→∆

)()(lim
0

. 

This is denoted by any one of the following 

expressions: f
dx
d

dx
xdf

dx
dyfxfy ,)(,,),(, ′′′ , Dxy. 

 
A function f is said to be differentiable at the point x0 provided the derivative of f 
exists at x0. 
A function f is said to be differentiable on a set, if f is differentiable at every point in 
the set.  
The process of finding the derivative of a function is called differentiation. 
 
Example: 
Consider f(x) = 3x2 + 2x 
Then  

x
xfxxf

x ∆
−∆+

→∆

)()(lim
0

 = 
x

xxxxxx
x ∆

+−∆++∆+
→∆

]23[)](2)(3[lim
22

0
 

           = 
x

xxxxxxxx
x ∆

+−∆++∆+∆+
→∆

]23[]22363[lim
222

0
 

           = 
x

xxxx
x ∆

∆+∆+∆
→∆

236lim
2

0
 

           = 236lim
0

+∆+
→∆

xx
x

 

           =  6x + 2 
 
i.e., f ′(x) = 6x + 2 
 

5. Differentiation Formulas  [Ref 1: pg. 556-557, 563; Ref 2: pg. 86-87] 
 

There are several rules for finding the derivative without using the definition directly. 
These formulas greatly simplify the task of differentiation. 
 
(1) If f is a constant function f(x) = c, then 0)( =′ xf . 
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Suppose f and g are differentiable functions, c is a constant and n is a real number. 
Then, 
 

(2) 
dx
dfccf

dx
d

=)(  

(3) 
dx
dg

dx
dfgf

dx
d

+=+ )(    (The Sum Rule) 

(4) 
dx
dg

dx
dfgf

dx
d

−=− )(    (The Difference Rule) 

(5) 
dx
dfg

dx
dgfgf

dx
d

+=).(    (The Product Rule) 

(6) 2)(
g

dx
dgf

dx
dfg

g
f

dx
d −

=  provided that 0≠g  (The Quotient Rule) 

(7) 1)( −= nn nxx
dx
d     (The Power Rule) 

(8) )()).(())((( xgxgfxgf
dx
d ′′=   (The Chain Rule) 

 
An alternate formulation of the chain rule: Suppose y = f(u) and u = g(x). Then y = 

f(g(x)) is the composite of the functions g and f and 
dx
du

du
dy

dx
dy .=  

 
Example: 
 
(1) Let .43 23 −+= xxy  

Then )4()()3( 23

dx
dx

dx
dx

dx
dy −+=′   applying (3) and (4) above. 

                  = )4()()(3 23

dx
dx

dx
dx

dx
d

−+   applying (2) 

                     = xx 29 2 +     applying (1) and (7) 
 

(2) Let )13)(25( 3
1

++= xxy    

            Then )25()13()13()25( 3
1

3
1

+++++=′ x
dx
dxx

dx
dxy    applying (5) 

                      = )5)(13())(25( 3
1

3
2

+++
−

xxx   applying (1), (2), (3), (7) 
 

(3) Let 
x

xxy 33 +
=  
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Then 
2

33

)(

)()3()3(

x

x
dx
dxxxx

dx
dx

y
+−+

=′   applying (6) 

              = 
x

xxxxx )
2
1)(3()33( 2

1
32 −
+−+

 applying (2), (3), (7) 

(4) Let )35( 24 xxy −=  

Then )620()35(
2
1 32

1
24 xxxxy −−=′

−
  applying (8), (2), (4), (7) 

 
 

6. Standard Derivatives  
      [Ref 1: pg. 558-561, 567-568; Ref 2: pg. 153, 155-156, 166- 169, 225, 234-235, 237] 
 
      In the following table we give some standard derivatives 
 

I.      Power Functions:          Rnnxx
dx
d nn ∈= − ,)( 1  

 

II.     Exponential Functions: ( )1,0ln)( ≠>= aaaaa
dx
d xx  

                                              xx ee
dx
d

=)(  

 

III.   Logarithmic Functions: )0(
ln
1)(log >= x

ax
x

dx
d

a  

                                              )0(1)(ln >= x
x

x
dx
d  

 
IV.   Trigonometric Functions: 

                                              xx
dx
d cos)(sin =  

                                              xx
dx
d sin)(cos −=  

                                              xx
dx
d 2sec)(tan =         ( ,....2,1,0,

2
±±=+≠ nnx ππ ) 

                                              xecx
dx
d 2cos)(cot −=          ( ,....2,1,0, ±±=≠ nnx π ) 

                                              xxx
dx
d tansec)(sec =    ( ,....2,1,0,

2
±±=+≠ nnx ππ )   
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                                              ecxxxec
dx
d coscot)(cos −=  ( ,....2,1,0, ±±=≠ nnx π ) 

 
V.   Inverse Trigonometric Functions:  

                                              )(,1)(sin
22

1 ax
xaa

x
dx
d

<
−

=−  

                                              )(,1)(cos
22

1 ax
xaa

x
dx
d

<
−

−=−  

                                              22
1 )(tan

ax
a

a
x

dx
d

+
=−  

                                              22
1 )(cot

ax
a

a
x

dx
d

+
−=−  

                                              )(,)(sec
22

1 ax
axx

a
a
x

dx
d

>
−

=−  

                                              )(,)(cos
22

1 ax
axx

a
a
xec

dx
d

>
−

−=−  

 
 
Example: 

(1)  Let y = 
x

a x

sin
. 

       Then 
2
32

2
1

)(sin2

]cos))(sin(ln2[
)sin(

)(cos)(sin
2
1lnsin

x

xxaa
x

xxaaax
y

x
xx

−
=

−
=′

−

 

 

(2)  Let 
3

tan.tan 1 xxy −=  

       Then 
9

3.tan
3

tan.sec 2
12

+
+=′ −

x
xxxy  

 

(3)   Let x
x

ey sec
3sin

= . 

        Then ]
)(sec

)tan)(sec3(sin)3cos3)((sec[ 2
sec

3sin

x
xxxxxey x

x −
=′ . 

(4)   Let ]
cot

)3(cosln[ 2

432

x
exy

x−
=  

  Then      
2 3 3 2 4 2 3 4 2 2

2 3 4 2 2

2

1 (cot )[ 2cos(3 )sin(3 )9 4 ] [cos (3 ) ]( cos )2.[ ]
cos (3 ) (cot )[ ]

cot

x x

x
x x x x e x e ec x xy

x e x
x

− − − − −′ =
−
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7. Higher Order Derivatives [Ref 1: pg. 577; Ref 2: pg. 89] 
 

Let y = f(x) be a differentiable function.  Its derivative y′ is also called the first 
derivative of f.  If y′ is differentiable, its derivative is called the second derivative of 
f.  If the second derivative is differentiable, its derivative is called the third 
derivative of f and so on.  
 
We use the following notations: 

First derivative of y = f(x): yD
dx
dyxfy x,),(, ′′  

Second derivative of y = f(x): yD
dx

ydxfy x
2

2

2

,),(, ′′′′  

Third derivative of y = f(x): yD
dx

ydxfy x
3

3

3

,),(, ′′′′′′  

nth derivative of y = f(x):  yD
dx

ydfy n
xn

n
nn ,,, )()(  

 
Example: 
 
(1) Suppose ).13cos( += xy  

Then )13sin(3 +−=′ xy  
         )13cos(32 +−=′′ xy  
         )13sin(33 +=′′′ xy  

          ( ) 3 cos[(3 1) ] 1
2

n n ny x nπ
= + + ≥          

            

(2) Suppose 2)1(
1
−

=
x

y  

Then 3)1(2 −−−=′ xy  
         4)1)(3)(2( −−−−=′′ xy  
        5)1)(4)(3)(2( −−−−−=′′′ xy  
         ( ) ( 2)( 1) ( 1)!( 1) 1n n ny n x n− += − + − ≥  

 
8. Applications  

[Ref 1: pg. 596-597, 606-610, Ref 2: pg. 102, 108, 110, 115-117, 129-130, 175-176] 
 

Many physical phenomena (growth of plants, population growth, radio active decay  
etc.) involve changes in quantities with respect to other quantities. The average rate of 
change shows the change in the dependent variable per unit change of the 
independent variable in a given interval. If we consider the velocity of a vehicle, this 
usually varies with time. The instantaneous rate of change of the position function 
with respect to time would give the velocity at a given instance t.  
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Rectilinear motion -Velocity and Acceleration [Ref 2: pg. 175-176] 
 

Let s(t) denote the position function of an object moving along a straight line from a 

certain point. Then the average velocity from t = to to t = to+ ∆t  is 
t

tstts oo

∆
−∆+ )()(

. 

The instantaneous velocity (or velocity) v(to)  of the object at time to is given by 

v(to) = 
t

tstts
t ∆

−∆+
→∆

)()(
lim

0

oo  = s′(to). 

Therefore, if s(t) denotes the position function of an object moving in a straight line 
from a certain initial point, then the velocity function v(t) of the object at time t is 
given by v(t) = s′(t). 
 
If the velocity is negative, this means that object is moving in the direction of 
decreasing s. 
 
The derivative of the velocity function v(t) is called the acceleration function and is 
denoted by a(t).   a(t) = v′(t) = s′′(t). 
 
Example: 
The distance s (in meters) an object moves in t seconds is given by 216120)( ttts −= . 
Let us find the following: 
(i) The velocity after 3 seconds 
(ii) The acceleration after 3 seconds 
(iii) The time the velocity is zero 
(iv) The distance the body has travelled before coming to rest 
(v) The velocity after 5 seconds, and the significance of its sign. 
 
(i) The velocity after 3 seconds is v(3) = s′(3) 
         s′(t) = 120 – 32t. 

 Therefore, s′(3) = [120 – (32)(3)] ms-1= 24 ms-1 

(ii)   The acceleration after 3 seconds is a(3) = s′′(3). 
  s′′(t) = -32.  Thus s′′(3) = -32 ms-2 

(iii) v(t) = s′(t) = 120 – 32t = 0 when t = sec
4
33sec

4
15sec

32
120

== . 

(iv) When sec
4
33=t , 15 225( ) [120( ) 16( )]

4 16
s t m= − = [450 225] 225m m− = .  

       i.e., The distance the body has travelled before coming to rest is 225m. 
 

(v) The velocity after 5sec is v(5) = [120 – 32(5)] ms-1= [120 – 160] ms-1= -40 ms-1.  
      This shows that the object is moving in a direction opposite to its initial  
      direction after 5sec. 
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y 

x 

Q(xo+ ∆x, f(xo +∆x)) 

P(xo, f(xo)) 

Figure 2 
t 

y 

x 

Q 

P(xo, f(xo)) 

Figure 3 

t Q 
Q 

Tangent Line to a curve  [Ref 1: pg. 596-597; Ref 2: pg. 102] 
 
 
 
The tangent line to a curve at a point P is  
the line that touches the curve at point P. 
 
To find the tangent line t to the graph of a  
function f at a point P(xo, f(xo)) we need to  
find the slope m of t. Since we only have  
one point P on t, we compute an  
approximation to m by selecting a point   
Q(xo+ ∆x, f(xo +∆x)) close to P on the curve  
and computing the slope mPQ of the secant  
line PQ (Figure 2). As the point Q moves  
towards the point P along the curve (Figure 
3), if the slope mPQ of the secant line PQ  
approaches the value m, then we define the 
tangent line t to the curve at the point P to  
be the line through P with slope m. 
 
 
In the notation of limits we have 

x
xfxxf

mm
xPQPQ ∆

−∆+
==

→∆→

)()(
limlim oo

0
 

 
= )( oxf ′ . 

 
 
Example: 

Let 
x

xxf
−

=
1

)( . 

Then 22 )1(
1

)1(
)1.(1).1()(

xx
xxxf

−
=

−
−−−

=′ . 

Therefore, 
4
1)3( =′f .  

When x = 3, f(3) =
2
3

− . 

Therefore, the tangent line to the curve of 
x

xxf
−

=
1

)(  at the point (3, 
2
3

− ) is given 

by y – (
2
3

− ) = )3(
4
1

−x  or 
4
9

4
1

−= xy . 
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Curve Sketching- Maxima and Minima 
[Ref 1: pg. 606-610; Ref 2: pg. 108, 110, 115-117, 129-130] 

Definition 9: 
(1) A function f is said to be increasing on an interval if whenever x < y on the 

interval, we have f(x) < f(y).   
(2) A function f is said to be decreasing on an interval if whenever x < y on the 

interval, we have f(x) > f(y).   
(3) A function f is said to have a relative minimum at xo if f(x) ≥ f(xo) for all x in 

some open interval (a, b) containing xo (on which f is defined). 
(4) A function f is said to have a relative maximum at xo if f(x) ≤ f(xo) for all x in 

some open interval (a, b) containing xo (on which f is defined). 
(5) A relative extremum of f  is either a relative maximum or a relative 

minimum of f. 
(6) A number xo in the domain of the function f is called a critical number of f if 

either f ′(xo) = 0 or f ′(xo) is not defined. 
(7) An absolute maximum of a function f on a set S occurs at a point xo in S if 

f(x) ≤ f(xo) for all x in S. 
(8) An absolute minimum of a function f on a set S occurs at a point xo in S if 

f(x) ≥ f(xo) for all x in S. 
(9) A point of inflection on a curve y = f(x) is a point at which the concavity 

changes; i.e., the curve is concave upward on one side of the point and 
concave downward on the other side. 

(10) A vertical line x = xo such that f(x) approaches +∞ or -∞ as x approaches xo 
from either the left or the right side, is called a vertical asymptote of the 
graph of f. 

(11) A horizontal line y = yo is called a horizontal asymptote of the graph of f if 
either ox

yxf =
−∞→

)(lim  or ox
yxf =

∞→
)(lim  

Theorem: 
 
(1) If f ′ is positive on an interval, then f is increasing on the interval. 
 
(2) If f ′ is negative on an interval, then f is decreasing on the interval. 
 
(3) If f has a relative extremum at a point xo at which f ′(xo) is defined, then           

f ′(xo) = 0. 
 

(4) If f ′(xo) = 0 and f ′′(xo) exists, then  
(a) if f ′′(xo) < 0, f has a relative maximum at xo. 
(b) if f ′′(xo) > 0, f has a relative minimum at xo. 
(c) if f ′′(xo) = 0,  we cannot conclude anything about f  at xo. 
(This is called the second derivative test) 
 

(5) Suppose f ′(xo) = 0. 
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(d) If f ′ is positive in an open interval (a, xo) immediately to the left of xo and 
negative on an open interval (xo, b) immediately to the right of xo, then f 
has a relative maximum at xo. 

(e) If f ′ is negative in an open interval (a, xo) immediately to the left of xo and 
positive on an open interval (xo, b) immediately to the right of xo, then f 
has a relative minimum at xo. 

(f) If f ′ has the same sign in open intervals (a, xo) and (xo, b) immediately to 
the left and to the right of xo, then f has neither a relative maximum nor a 
relative minimum at xo. 

(This is called the first derivative test) 
 

(6) (a) If f ′′(x) > 0 for x in the open interval (a, b), then the graph of f is concave  
                 upward for a < x < b. (i.e., the graph is above the tangent line at x in (a, b)). 

(b) If f ′′(x) < 0 for x in the open interval (a, b), then the graph of f is concave  
                 downward for a < x < b. (i.e., the graph is below the tangent line at x in     
                 (a, b)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 4: 
(i) The function is increasing on the interval (xo, b) and f ′(x) > 0 on this interval. 
(ii) The function is decreasing on the interval (a, xo) and f ′(x) < 0 on this interval. 
(iii) The function has a relative minimum at xo, xo is a critical value of f , f ′(xo) = 0  

and f ′′(xo) > 0  . 
(iv) f ′′(x) > 0 for x in the open interval (a, b), and hence the graph of f is concave  

                  upward for a < x < b. 
(v) An absolute minimum on the interval [a, b] occurs at xo. 
 
 
 
 

f′(xo) = 0 

xo 
x 

y 

x1 

f′(x1) > 0 
f′(x2) < 0 

x2 a b 

Figure 4 

f′′(xo) > 0 
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In Figure 5:  
 
(i) The graph of the function 

is concave down on the  
interval (a, xo). 
 

(ii) The graph of the function is  
concave up on the interval 
(xo, b). 

(iii) (xo, f(xo)) is a point of  
inflection. 

 
 
 
 
Example: 
Let us consider the graph of the function 

234 18163)( xxxxf +−=  on the interval 
[-1, 4]. 
 

xxxxf 364812)( 23 +−=′  
          = )34(12 2 +− xxx  
          = )1)(3(12 −− xxx  
 

0)( =′ xf  when x = 0, x = 1, x = 3. 
 

)(xf ′ is positive on (0, 1) and (3, 4), and  
therefore f is increasing on these intervals. 
 

)(xf ′ is negative on (-1, 0) and (1, 3) and  
therefore f is decreasing on these intervals. 
 

=− )1(f 37, f(0) = 0, f(1) = 5, f(3) = -27 and  
f(4) = 32. 
 

)383(12)( 2 +−=′′ xxxf  
 

036)0( >=′′f . Therefore, (0, 0) is a relative minimum. 
 

024)1( <−=′′f . Therefore, (1, 5) is a relative maximum. 
 

072)3( >=′′f . Therefore, (3, -27) is a relative minimum. It is also the absolute 
minimum on the interval [-1, 4] 

x 

y 

f′′(x) > 0 

Figure 5 

f′′(x) < 0 

xo b a 

10 

20 

30 

40 

-10

-20

-30

-1 2 3 4 
x 

y Figure 6 

1

234 18163)( xxxxf +−=  
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Example: 
 

Let f(x) = 
x
1   (x ≠ 0). 

Then 2

1)(
x

xf −=′  and 3

2)(
x

xf =′′ . 

0)( <′ xf  for all x such that x ≠ 0. Therefore, f is decreasing on (-∞, 0) and on (0, ∞). 
0)( >′′ xf   when x > 0 and 0)( <′′ xf  when x < 0.  Therefore, the graph is concave down 

on (-∞, 0) and concave up on (0, ∞). 

01lim =
∞→ xx

 and 01lim =
−∞→ xx

. Therefore, y = 0 is a horizontal asymptote of the graph of f.  

∞=
+→ xx

1lim
0

 and −∞=
−→ xx

1lim
0

. Therefore, x = 0 is a vertical asymptote of the graph of f. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
9. Indeterminate Forms and L’Hospital’s Rule [Ref 2: pg. 243 – 245] 
 

Consider 
x

e x

x

1lim
0

−
→

. We cannot apply (d) of the theorem on limits (the limit of a quotient 

is the quotient of the limits) since the limit of the denominator is 0. Here we have that 
both the numerator and the denominator approach 0 as x approaches 0. A limit of this 
form (where both the numerator and denominator approach 0) may or may not exist.  

x 

y 

x=0 

f′′(x) > 0 

Figure 7 

f′′(x) < 0 
O 

y=0 
f′ (x) < 0 

f′ (x) < 0 

f(x) = 
x
1  
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Suppose we have a limit of the form 
)(
)(lim

xg
xf

ax→
 where both f(x) → 0 and g(x) → 0 as        

x → a. We call a limit of this type an indeterminate form of type 
0
0 . 

 

Consider 2

lnlim
x

x
x ∞→

. Here both the numerator and the denominator approach ∞ as x → ∞. 

A limit of this form may or may not exist.  
 

Suppose we have a limit of the form 
)(
)(lim

xg
xf

ax→
 where both f(x) → ∞ (or -∞) and g(x) → ∞ 

(or -∞) as x → a. We call a limit of this type an indeterminate form of type 
∞
∞ . 

 
A systematic method for evaluating indeterminate forms is l’Hospital’s Rule. 
 
Theorem: L’Hospital’s Rule 
 
Suppose f and g are differentiable and 0)( ≠′ xg on an open interval I that contains a 
(except possibly at a).  Suppose that 
 

0)(lim =
→

xf
ax

 and 0)(lim =
→

xg
ax

 

or that 
±∞=

→
)(lim xf

ax
 and ±∞=

→
)(lim xg

ax
. 

 (i.e., we have an indeterminate form of the type 
0
0 or 

∞
∞ ) 

Then 
)(
)(lim

)(
)(lim

xg
xf

xg
xf

axax ′
′

=
→→

, if the limit on the right hand side exists (or is +∞ or -∞). 

 
Note: l’Hospital’s Rule is also valid for one-sided limits and for limits at infinity or 
negative infinity.  i.e., ax →  in l’Hospital’s Rule can be replaced by any one of 

+→ ax , _ax → , ∞→x  or −∞→x . 
 
Example: 
 

(1) 1
1

coslimsinlim
00

==
→→

x
x

x
xx

. 

(2) ∞===
∞→∞→∞→ 2

lim
2

limlim 2

x

x

x

x

x

x

e
x

e
x
e  by repeated application of l’Hospital’s Rule. 

 
 



 20

Indeterminate Products 
 
Consider )().(lim xgxf

ax→
 where 0)(lim =

→
xf

ax
and ∞=

→
)(lim xg

ax
. A limit of this kind is 

called an indeterminate form of type 0.∞. We convert this limit to an indeterminate 

form of the type 
0
0  or 

∞
∞  by writing the product f(x).g(x) as f(x).g(x) = 

)(/1
)(
xg

xf  or as 

f(x).g(x) = 
)(/1

)(
xf

xg  and then apply l’Hospital’s Rule. 

 
Example: 

x
xxx

xx /1
lnlimlnlim

00 ++ →→
= . 

x
x

x /1
lnlim

0+→ 20 /1
/1lim

x
x

x −
=

+→
  by applying l’Hospital’s Rule 

    0)(lim
0

=−=
+→

x
x

 

Therefore, 0lnlim
0

=
+→

xx
x

. 

 
Indeterminate Differences 
 
If ∞=

→
)(lim xf

ax
and ∞=

→
)(lim xg

ax
, then ))()((lim xgxf

ax
−

→
is called an indeterminate form 

of type ∞ - ∞. To find ))()((lim xgxf
ax

−
→

, we convert it into an indeterminate form of the 

type 
0
0  or 

∞
∞  and then apply l’Hospital’s Rule. 

 
Example: 

)
cos

sin1(lim)
cos
sin

cos
1(lim)tan(seclim

222
x

x
x
x

x
xx

xxx

−
=−=−

+++

→→→
πππ

. 

)
sin
cos(lim)

cos
sin1(lim

22
x
x

x
x

xx −
−

=
−

++

→→
ππ

 by applying l’Hospital’s Rule 

                         = 0    
Therefore, )tan(seclim

2

xx
x

−
+

→
π

= 0. 

Indeterminate Powers 
 
There are several indeterminate forms that arise from )()]([lim xg

ax
xf

→
. 

(i) 0)(lim =
→

xf
ax

and 0)(lim =
→

xg
ax

  type 00 

(ii) ∞=
→

)(lim xf
ax

and 0)(lim =
→

xg
ax

  type ∞0 
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(iii) 1)(lim =
→

xf
ax

and ±∞=
→

)(lim xg
ax

  type 1∞ 

 
Each of these can be treated by considering the natural logarithm of the function, which 
would give us an indeterminate product of type 0.∞. 
 
Example:  
Consider x

x
x

+→0
lim . This is of the type 00.   

Let y = xx. Then ln y = xlnx. 
0lnlimlnlim

00
==

++ →→
xxy

xx
 (by the example above).   

Therefore, x

x
x

+→0
lim  = 0ln

00
limlim eey y

xx
==

++ →→
=1. 


